Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

TERAHERTZ SPECTROSCOPIC INVESTIGATION OF SALICYLIC ACID AND SODIUM SALICYLATE

Abstract

The terahertz spectra of salicylic acid and sodium salicylate are measured by broadband terahertz time-domain spectroscopy (THz-TDS). Two absorption features of salicylic acid and three characteristic features of sodium salicylate are reported for the first time. Our investigation shows that salicylic acid and sodium salicylate can be easily distinguished based on their distinctive THz spectra, which could be attributed to their intra- and intermolecular structure differences. Furthermore, solid-state density functional theory calculations reveal that the absorption features of salicylic acid mainly originate from intermolecular interactions, except the absorption feature at 2.28 THz, while gaseous-state theory calculations show that the absorption features of sodium salicylate mainly come from intramolecular vibrations except the absorption feature at 0.40 THz. Our investigation indicates that THz vibrational modes are highly sensitive to molecular structures and intermolecular interactions, promoting the application of THz spectroscopy in distinguishing chemicals and pharmaceuticals with similar molecular structures.

About the Authors

L. . Ding
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
Russian Federation


W. -H. Fan
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
Russian Federation


C. . Song
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
Russian Federation


X. . Chen
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
Russian Federation


Z. -Y. Chen
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
Russian Federation


References

1. G. Davies, A. D. Burnett, W. H. Fan, E. H. Linfield, J. E. Cunningham, Mater. Today, 11, 18-26 (2008).

2. J. Hooper, E. Mitchell, C. Konek, J. Wilkinson, J. Wilkinson, Chem. Phys. Lett., 467, 309-312 (2009).

3. F. Zhang, O. Kambara, K. Tominaga, J. I. Nishizawa, T. Sasaki, H. W. Wang, M. Hayashi, RSC Adv., 4, 269-278 (2014).

4. Z. P. Zheng, W. H. Fan, J. Biol. Phys., 38, 405-413 (2012).

5. M. D. King, W. Ouellette, T. M. Korter, J. Phys. Chem. A, 115, 9467-9478 (2011).

6. D. Suhandy, T. Suzuki, Y. Ogawa, N. Kondo, H. Naito, T. Ishihara, W. Liu, Eng. Agric. Environ. Food, 5, 90-95 (2012).

7. K. Shiraga, T. Suzuki, N. Kondo, J. D. Baerdemaeker, Y. Ogawa, Carbohydr. Res., 406, 46-54 (2015).

8. M. Song, F. Yang, L. Liu, L. Shen, P. Hu, F. Han, J. Nanosci. Nanotechnol., 16, 12208-12213 (2016).

9. M. T. Ruggiero, T. Bardon, M. Strlic, P. F. Taday, T. M. Korter, J. Phys. Chem. A, 118, 10101-10108 (2014).

10. Z. P. Zheng, W. H. Fan, H. Yan, J. Liu, L. M. Xu, Spectrosc. Spect. Anal., 33, 582-585 (2013).

11. S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, Y. Kawazoe, Jpn. J. Appl. Phys., 45, 4170-4175 (2006).

12. M. Boczar, Ł. Boda, M. J. Wójcik, J. Chem. Phys., 124, 084306 (2006).

13. N. Laman, S. S. Harsha, D. Grischkowsky, Appl. Spectrosc., 62, 319-326 (2008).

14. M. Takahashi, Y. Ishikawa, H. Ito, Chem. Phys. Lett., 531, 98-104 (2012).

15. D. J. Bakker, A. Peters, V. Yatsyna, V. Zhaunerchyk, A. M. Rijs, J. Phys. Chem. Lett., 7, 1238-1243 (2016).

16. J. Hisazumi, T. Watanabe, T. Suzuki, N. Wakiyama, K. Terada, Chem. Pharm. Bull., 60, 1487-1493 (2012).

17. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne, Z. Kristallogr., 220, 567-570 (2005).

18. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865-3868 (1996).

19. Z. P. Zheng, W. H. Fan, H. Li, J. Tang, J. Mol. Spectrosc., 296, 9-13 (2014).

20. M. T. Ruggiero, J. Gooch, J. Zubieta, T. M. Korter, J. Phys. Chem. A, 120, 939-947 (2016).

21. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 102, 073005 (2009).

22. L. Kleinman, D. M. Bylander, Phys. Rev. Lett., 48, 1425-1428 (1982).

23. R. A. Evarestov, V. P. Smirnov, Phys. Rev. B, 70, 155-163 (2004).

24. W. Cochran, Acta Crystallogr., 6, 260-268 (1953).

25. A. D. Becke, J. Chem. Phys., 98, 5648-5652 (1993).

26. M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett., 153, 503-506 (1988).

27. J. Dash, S. Ray, K. Nallappan, V. Kaware, N. Basutkar, R. G. Gonnade, B. Pesala, J. Phys. Chem., A 119, 7991-7999 (2015).

28. M. Takahashi, Y. Ishikawa, Chem. Phys. Lett., 642, 29-34 (2015).


Review

For citations:


Ding L., Fan W.-., Song C., Chen X., Chen Z.-. TERAHERTZ SPECTROSCOPIC INVESTIGATION OF SALICYLIC ACID AND SODIUM SALICYLATE. Zhurnal Prikladnoii Spektroskopii. 2018;85(6):1021(1)-1021(7). (In Russ.)

Views: 447


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)