TECHNIQUE OF INVERSION OF THE TRANSPARENCY SPECTRA FOR EVALUATING THE CONTENT OF CCl3F FREON IN THE ATMOSPHERE
Abstract
We developed a technique and selected the optimal parameters for solving the inverse problem of determining the total content of R-11 freon (CCl3F) from ground-based spectrometric measurements of solar radiation at the NDACC St. Petersburg station using a IFS125HR Fourier interferometer and SFIT4 software. The main features of the technique: the used spectral interval is 830-860 cm-1, the previously measured spectral sensitivity function of the device is taken into account, and the continuum absorption of radiation by water vapor and attenuation of radiation by amorphous ice deposited on the receiver are also taken into account. Moreover, when solving the inverse problem to compensate the variability of the thickness of the ice film, the shape of the baseline of the spectrum is corrected by a polynomial of the second degree and the vertical distribution of water vapor is specified. Using the technique, the total content of R-11 was determined in the period 2009-2019, and an estimation of measurement errors was obtained: the average systematic error was 7.4% and the random error was 2.9% for the entire observation period. The assessment of the long-term total content trend is -0.29 ± 0.07%/year, and the mean molar fraction trend is -0.31 ± 0.07%/year.
About the Authors
A. V. PolyakovRussian Federation
St. Petersburg, 199034
A. V. Poberovsky
Russian Federation
St. Petersburg, 199034
Ya. A. Virolainen
Russian Federation
St. Petersburg, 199034
M. V. Makarova
Russian Federation
St. Petersburg, 199034
References
1. M. J. Molina, F. S. Rowland. Nature, 249 (1974) 810—812
2. M. Ko, P. Newman, S. Reimann, S. Strahan, R. Plumb, R. Stolarski, J. Burkholder, W. Mellouki, A. Engel, E. Atlas. Lifetimes оf Stratospheric Ozone-Depleting Substances, their Replacements, аnd Related Species, SPARC Report, N 6, WCRP-15/2013 (2013)
3. S. A. Montzka, G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller, J. W. Elkins. Nature, 557 (2018) 413—417
4. B. Dunse, L. Steele, S. Wilson, P. Fraser, P. Krummel. Atm. Environ., 39 (2005) 6334—6344
5. S. A. Montzka, R. C. Myers, J. H. Butler, J. W. Elkins, S. O. Cummings. Geophys. Research Lett., 20, N 8 (1993) 703—706; doi:10.1029/93GL00753, data are regularly updated at ftp://ftp.cmdl.noaa.gov/hats/hcfcs/hcfc22/flasks/
6. F. Khosrawi, R. Müller, H. Irie, A. Engel, G. Toon, B. Sen, S. Aoki, T. Nakazawa, W. Traub, K. J. Jucks. J. Geophys. Res. Atm., 109 (2004) D06311
7. L. Hoffmann, M. Kaufmann, R. Spang, R. Müller, J. J. Remedios, D. P. Moore, C. M. Volk, T. von Clarmann, M. Riese. Atm. Chem. Phys., N 8 (2008) 3671—3688
8. E. Mahieu, P. Duchatelet, P. Demoulin, K. A. Walker, E. Dupuy, L. Froidevaux, C. Randall, V. Catoire, K. Strong, C. D. Boone, P. F. Bernath, J.-F. Blavier, T. Blumenstock, M. Coffey, M. DeMazière, D. Griffith, J. Hannigan, F. Hase, N. Jones, K. W. Jucks, A. Kagawa, Y. Kasai, Y. Mebarki, S. Mikuteit, R. Nassar, J. Notholt, C. P. Rinsland, C. Robert, O. Schrems, C. Senten, D. Smale, J. Taylor, C. Tétard, G. C. Toon, T. Warneke, S. W. Wood, R. Zander, C. Servais. Atm. Chem. Phys., N 8 (2008) 6199—6221
9. E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, K. A. Walker. Atm. Measur. Tech., 9 (2016) 3355—3389
10. S. Kellmann, T. von Clarmann, G. P. Stiller, E. Eckert, N. Glatthor, M. Höpfner, M. Kiefer, J. Orphal, B. Funke, U. Grabowski, A. Linden, G. S. Dutton, J. W. Elkins. Atm. Chem. Phys., N 12 (2012) 11857—11875
11. J. Notholt. Geophys. Res. Lett., 21 (1994) 2385—2388
12. R. Zander, E. Mahieu, P. Demoulin, P. Duchatelet, C. Servais, G. Roland, L. Delbouille, M. De Mazière, C. P. Rinsland. Environ. Sci., N 2 (2005) 295—303
13. E. Mahieu, C. P. Rinsland, T. Gardiner, R. Zander, P. Demoulin, M. P. Chipperfield, R. Ruhnke, L. S. Chiou, M. De Mazière. Geophys. Res. Abstr., 12 (2010) EGU2010-2420-3; https://meetingorganizer.copernicus.org/EGU2010/EGU2010-2420-3.pdf
14. M. Zhou, C. Vigouroux, B. Langerock, P. Wang, G. Dutton, C. Hermans, N. Kumps, J.-M. Metzger, G. Toon, M. De Mazière. Atm. Measur. Techn., 9 (2016) 5621—5636
15. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, H. Imhasin. J. Mol. Spectr., 323 (2016) 2—14
16. А. В. Поляков, Ю. М. Тимофеев, Я. А. Виролайнен, М. В. Макарова, А. В. Поберовский, Х. Имхасин. Изв. РАН. ФАО, 54 № 5 (2018) 487—494
17. А. В. Поляков, Я. А. Виролайнен, М. В. Макарова. Журн. прикл. спектр., 85, № 6 (2018) 962—970 [A. V. Polyakov, Y. A. Virolainen, M. V. Makarova. J. Appl. Spectr., 85 (2018) 1085—1093]
18. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hopfner, N. B. Jones, C. P. Rinsland, S. W. Wood. J. Quant. Spectrosc. Radiat. Transfer, 87 (2004) 25—52
19. А. В. Поляков, Я. А. Виролайнен, М. В. Макарова. Журн. прикл. спектр., 86, № 3 (2019) 417—424 [A. V. Polyakov, Y. A. Virolainen, M. V. Makarova. J. Appl. Spectr., 86 (2019) 449—456]
20. E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, D. D. Tobin. Phil. Trans. Roy. Soc. A, 370 (2012) 1—37; doi: 10.1098:rsta.2011.0295
21. MT_CKD, continuum software package: http://rtweb.aer.com/continuum_code.html
22. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, T. Blumenstock. Atm. Measur. Techn., N 10 (2017) 4521—4536
23. D. M. Hudgins, S. A. Sandford, L. J. Allamandola, A. G. G. M. Tielens. Astrophys. J. Suppl. Ser., 86 (1993) 713—870
24. D. K. Lynch. Space Science Applications Laboratory Operations. Aerospace Report No. TR-2006(8570)-1 (2006)
Review
For citations:
Polyakov A.V., Poberovsky A.V., Virolainen Ya.A., Makarova M.V. TECHNIQUE OF INVERSION OF THE TRANSPARENCY SPECTRA FOR EVALUATING THE CONTENT OF CCl3F FREON IN THE ATMOSPHERE. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):108-115. (In Russ.)