Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

MOLECULAR MODELLING, DIMER CALCULATIONS, VIBRATIONAL SPECTRA, AND MOLECULAR DOCKING STUDIES OF 5-CHLOROURACIL

Abstract

The structure and vibrational calculations of 5-chlorouracil (5-ClU) and its most stable dimer have been analyzed using the DFT method with B3LYP/6-31++G(d,p) and wb97xd/6-31++G(d,p), respectively. Vibrational calculations of the monomeric and dimeric forms were performed using both harmonic and anharmonic oscillator approximations with the same basis sets. A complete vibrational analysis of the molecule has been performed by combining experimental Raman, FT-IR spectral data and quantum chemical calculations. In addition, the DNA docking analysis of 5-ClU molecule was performed. 5-ClU molecule binds to the active site of DNA by hydrogen bonding interactions. The results show that the docked ligand formed a stable complex with DNA with binding affinity of -5.3 kcal/mol.

About the Authors

E. Akalin
Istanbul University, Vezneciler
Turkey

Department of Physics, Faculty of Science

34134, Istanbul



S. Celik
Istanbul University, Cerrahpasa
Turkey

Electrical-Electronics Engineering Department, Engineering Faculty

34320, Avcilar, Istanbul



S. Akyuz
Istanbul Kultur University
Turkey

Physics Department, Science and Letters Faculty

Atakoy Campus, Bakirkoy 34156, Istanbul



References

1. S. Ortiz, M. C. Alvarez-Ros, M. A. Palafox, V. K. Rastogi, V. Balachandran, S. K. Rathor, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 130, 653–668 (2014).

2. K. Dobrosz-Teperek, Z. Zwierzchowska, W. Lewandowski, K. Bajdor, J. C. Dobrowolski, A. P. Mazurek, J. Mol. Struct., 471, No. 1-3, 115–125 (1998).

3. J. P. Henderson, J. Byun, J. Takeshita, J. W. Heinecke, J. Biol. Chem., 278, No. 26, 23522–23528 (2003).

4. S. Ortiz, M. A. Palafox, V. K. Rastogi, T. Akitsu, I. H. Joe, S. Kumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 110, 404–418 (2013).

5. J. C. Dobrowolski, J. E. Rode, R. Kołos, M. H. Jamroz, K. Bajdor, A. P. Mazurek, J. Phys. Chem. A, 109, No. 10, 2167–2182 (2005).

6. S. Sun, B. Alex, J. Phys. Chem. A, 119, No. 17, 3961–3971 (2015).

7. G. N. Ten, T. G. Burova, V. I. Baranov, J. Appl. Spectrosc., 73, No. 4, 492–498 (2006).

8. J. S. Singh, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 87, 106–111 (2012).

9. P. M. Elkin, V. F. Pulin, V. I. Berezin, Izv. Saratov. Univ., Fizika, 13, No. 2, 39–45 (2013) (In Russ.).

10. S. M. Morris, Mutat. Res./Rev. Genet. Toxicol., 297, No. 1, 39–51 (1993).

11. Q. Jiang, B. C. Blount, B. N. Ames, J. Biol. Chem., 278, No. 35, 32834–32840 (2003).

12. V. K. Rastrogi, H. P. Mital, C. B. Arora, U. Awasthi, In Spectroscopy of Biological Molecules, Springer, Dordrecht, 349–350 (1995).

13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 03, Revision B.1; Gaussian, Inc.: Pittsburgh, PA (2003).

14. A. D. Becke, J. Chem. Phys., 98, No. 7, 5648–5652 (1993).

15. M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4.0, Drug Institute, Warsaw, Poland (2004).

16. O. Trott, J. O. Arthur, J. Comput. Chem., 31, No. 2, 455–461 (2010).

17. J. D. Chai, H. G. Martin, Phys. Chem. Chem. Phys., 10, No. 44, 6615–6620 (2008).

18. J. D. Chai, H. G. Martin, J. Chem. Phys., 128, No. 8, 084106 (2008).

19. H. Sternglanz, E. B. Charles, Biochim. Biophys. Acta (BBA)–Nucleic Acids and Protein Synth., 378, No. 1, 1–11 (1975).

20. E. I. Izgorodina, L. B. Uditha, R. M. Douglas, J. Phys. Chem. A, 113, No. 25, 7064–7072 (2009).

21. J. Mohan, Organic Spectroscopy: Principles and Applications, CRC Press (2004).

22. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons (2004).

23. H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, R. E. Dickerson, Proc. Natl. Acad. Sci., 78, No. 4, 2179–2183 (1981).

24. N. Shahabadi, B. Somayeh, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 136, 1454–1459 (2015).


Review

For citations:


Akalin E., Celik S., Akyuz S. MOLECULAR MODELLING, DIMER CALCULATIONS, VIBRATIONAL SPECTRA, AND MOLECULAR DOCKING STUDIES OF 5-CHLOROURACIL. Zhurnal Prikladnoii Spektroskopii. 2019;86(6):858-867.

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)