Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

TRANSMISSION AND REFLECTION SPECTRA OF ZINC OXIDE IMPLANTED WITH A HIGH DOSE OF COBALT IONS

Abstract

Optical transmission and reflection spectra of monocrystalline plates of zinc oxide (ZnO) implanted with 40 keV Co+ ions to high doses of (0.5-1.5)×1017 cm-2 are presented. A decrease in the transmission value and the shift of the optical transmission edge to the long-wavelength region with increasing of the dose are observed in transmission spectra. Three absorption bands in the range of 550-680 nm are also observed in transmission spectra. The bands and their positions are typical for optically active Co2+ ions in the zinc cation substitution positions in the ZnO matrix. The reflection coefficient of the implanted side of the ZnO plate increases monotonously with the dose values. In both, the initial and implanted ZnO plates, a characteristic structure at λ = 375 nm due to exciton reflection is observed when recording the reflection spectra from the reverse (non-irradiated) side. Modeling of light transmission and reflection in cobalt-implanted ZnO samples was carried out within the framework of a three-layer model, in which the first surface layer contains cobalt nanoclusions, the second, deeper layer is a solid solution of cobalt ion substitution in the ZnO matrix, the third layer is the unradiated part of the ZnO plate. As a result of modeling, effective refractive indexes of two ZnO layers containing implanted cobalt admixture in different phase states were determined.

About the Authors

Yu. A. Bumai
Belarusian National Technical University
Belarus
65 Nezavisimosti Prosp., Minsk, 220013


V. F. Valeev
E. K. Zavoisky Kazan Physical Technical Institute, FIC Kazan Scientific Center of the Russian Academy of Sciences
Russian Federation
Kazan, 420029


V. I. Golovchuk
Belarusian State University
Belarus
Minsk, 220050


A. I. Gumarov
Kazan (Volga) Federal University
Russian Federation
Kazan, 420008


M. G. Lukashevich
Belarusian State University
Belarus
Minsk, 220050


V. I. Nuzhdin
E. K. Zavoisky Kazan Physical Technical Institute, FIC Kazan Scientific Center of the Russian Academy of Sciences
Russian Federation
Kazan, 420029


V. B. Odzhaev
Belarusian State University
Belarus
Minsk, 220050


A. A. Kharchenko
Belarusian State University
Belarus
Minsk, 220050


R. I. Khaibullin
E. K. Zavoisky Kazan Physical Technical Institute, FIC Kazan Scientific Center of the Russian Academy of Sciences
Russian Federation
Kazan, 420029


References

1. U. Ozgur. J. Appl. Phys., 98 (2005) 041301

2. C. Klingshirn. Phys. Status Solidi B, 247, N 6 (2010) 1424—1447

3. А. А. Харченко, Ю. А. Бумай, А. И. Гумаров, М. Г. Лукашевич, В. И. Нуждин, Р. И. Хайбуллин, В. Б. Оджаев. Вестн. Бел. гос. ун-та, Сер. 1. Физ. Мат. Информ., № 1 (2014) 20—25

4. А. И. Гумаров, В. Ф. Валеев, В. И. Головчук, Н. М. Лядов, М. Г. Лукашевич, В. И. Нуждин, Л. Р. Тагиров, А. И. Файзрахманов, Р. И. Хайбуллин. Материалы 12-й междунар. конф. ВИТТ-2017, 19—22 сентября 2017 г., Минск, Беларусь (2017) 231—233

5. A. A. Achkeev, R. I. Khaibullin, L. R. Tagirov. Phys. Sol. State, 53, N 3 (2011) 543—553

6. J. J. Wu, W. S. C. Liu, M. H. Yang. Appl. Phys. Lett., 85 (2004) 1027

7. M. Naeem, S. K. Hasanain, A. Mumtaz. J. Phys: Cond. Matter, 20025210 (2008) 97

8. G. P. Joshi, N. S. Sahena, R. Mandal, A. Mishra, T. P. Sharma. Dull. Nat. Sci. Ind. Acad. Sci., 26, N 9 (2003) 378

9. A. E. Manouni, M. Tortosa, F. J. Manjon. Microelectron. J., 40 (2009) 268—271

10. С. J. Cong, J. H. Hong, K. J. Zhang. Mater. Chem. Phys., 113 (2009) 435—440

11. P. Koidl. Phys. Rev. B, 15 (1977) 2493—2499

12. А. Л. Степанов. Опт. и спектр., 89, № 3 (2000) 444—449

13. А. Л. Степанов, Д. Холе, В. Н. Попок. Письма в ЖЭТФ, 27, № 13 (2001) 57—63

14. A. Y.-C. Yu, N. M. Donovan, W. E. Spicer. Phys. Rev., 167, N 3 (1968) 670—673

15. D. J. Thomas. J. Phys. Chem. Sol., 15 (1960) 86—96

16. Ю. А. Бумай, В. С. Волобуев, В. Ф. Валеев, Н. И. Долгих, М. Г. Лукашевич, Р. И. Хайбуллин, В. И. Нуждин, В. Б. Оджаев. Журн. прикл. спектр., 79, № 5 (2012) 781—787 [U. A. Boomу, V. S. Volobuev, V. F. Valeev, N. I. Dolgikh, M. G. Lukashevich, R. I. Khaibullin, V. I. Nuzhdin, V. B. Odzhaev. J. Appl. Spectr., 79 (2012) 773—779]

17. В. И. Головчук, А. И Гумаров, Ю. А. Бумай, В. Ф. Валеев, М. Г. Лукашевич, В. И. Нуждин, В. Б. Оджаев, А. А. Харченко, Р. И. Хайбуллин. Cб. докл. VIII Междунар. науч. конф., “Взаимодействие излучений с твердым телом”, Минск, 24—28 сентября 2018 г., в 3-х т., Т. 1. ГНПО “ГНПЦ НАН Беларуси по материаловедению”, Минск, Ковчег (2018) 192—194

18. U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters, Berlin, Springer, Verlag (1995) 275—436

19. N. Kishimoto, Y. Takeda, N. Umeda, V. T. Crityna, Lee Saito. Nucl. Instr. Meth., 166B (2000) 840—844


Review

For citations:


Bumai Yu.A., Valeev V.F., Golovchuk V.I., Gumarov A.I., Lukashevich M.G., Nuzhdin V.I., Odzhaev V.B., Kharchenko A.A., Khaibullin R.I. TRANSMISSION AND REFLECTION SPECTRA OF ZINC OXIDE IMPLANTED WITH A HIGH DOSE OF COBALT IONS. Zhurnal Prikladnoii Spektroskopii. 2019;86(6):925-931. (In Russ.)

Views: 428


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)