Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

QUANTUM CHEMICAL INVESTIGATION OF trans- and cis-ISOMERS OF FLUPENTIXOL AS A NANO-DRUG

Abstract

Geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, thermodynamic properties, and MEP analysis of trans- and cis-structures of Flupentixol have been investigated using DFT and TDDFT methods with the B3LYP hybrid functional and 6-311+G** basis set. The results of calculation of the quantum properties verify the greater activity of the cis structure of this drug.

About the Authors

Z. A. Saleh
Islamic Azad University
Islamic Republic of Iran

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences

Tehran


S. B. Novir
Islamic Azad University
Islamic Republic of Iran

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences

Tehran


E. Balali
Islamic Azad University
Islamic Republic of Iran

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences

Tehran


References

1. A. G. Goodman, L. S. Gilman, The Pharmacological Basis of Therapeutics, 1, 8 th ed., Pergamon Press, New York (1995).

2. S. Ruhrmann, W. Kissling, O.M. Lesch, M. Schmauss, U. Seemann, M. Philipp, Prog. Neuro- Psychopharmacol. Biol. Psychiatry, 31, 1012–1022 (2007).

3. S. Walter, S. Bauer, I. Roots, J. Brockmoller, J. Chromatogr. B, 720, 231–237 (1998).

4. A. A. Elbary, A. A. Ramadan, I. R. Bendas, D. A. E. Mostafa, Int. Res. J. Pharm., 2, No. 9, 58–64 (2011).

5. Z. Talebpour, S. Haghgoo, M. Shamsipur, Anal. Biochem., 323, 205–210 (2003).

6. S. Ulrich, J. Chromatogr. B, 668, 31–40 (1995).

7. D. Yonara, M. M. Sunnetcioglu, Chem. Phys. Lipids, 198, 61–71 (2016).

8. V. Markovic, M. D. Joksovic, S.Markovic, I. Jakovljevic, J. Mol. Struct., 1058, 291–297 (2014).

9. G. M. J. Beijersbergen van Henegouwen, Adv. Drug. Res., 29, 79–170 (1997).

10. A. A. Kaczor, K. M. Targowska-Duda, B. Budzyńska, G. Biała, A. G. Silva, M. Castro, Neurochem. Int., 96, 84–99 (2016).

11. V. Krishnakumar, K. Murugeswari, N. Surumbarkuzhali, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 114, 410–420 (2013).

12. Ö. Bağlayan, M. Fatih Kaya, E. Güneş, M. Şenyel, J. Mol. Struct., 1122, 324–330 (2016).

13. G. Mahalakshmi, V. Balachandran, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 131, 587–598 (2014)

14. P. Rajesh, S. Gunasekaran, T. Gnanasambandan, S. Seshadri, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 137, 1184–1193 (2015).

15. J. L. Waddington, S. J. Gamble, R. C. Bourne, Eur. J. Pharmacol., 69, 511–513 (1981).

16. J. Kim, J. H. Song, Eur. J. Pharmacol., 779, 31–37 (2016).

17. I. Pajeva, D. K. Todorov, J. Seydel, Eur. J. Pharm. Sci., 21, 243–250 (2004).

18. T. Sokoließ, U. Menyes, U. Roth, T. Jira, J. Chromatogr. A, 948, 309–319 (2002).

19. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. John, A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

20. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 24, 669–681 (2003).

21. M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett., 255, 327–335 (1996).

22. V. Barone, M. Cossi, J. Phys. Chem. A, 102, 1995–2001 (1998).

23. P. Hohenberg, W. Kohn, Phys. Rev., 136B, 864–871 (1964).

24. C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev., 37B, 785–789 (1988).

25. R. G. Parr, W. Yang, Ann. Rev. Phys. Chem., 46, 701–728 (1995).

26. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

27. S. Bagheri Novir, S. M. Hashemianzadeh, Mol. Phys., 114, 650–662 (2016).

28. S. Bagheri Novir, S. M. Hashemianzadeh, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 143, 20–34 (2015).

29. C. R. Zhang, L. Liu, Z. J. Liu, Y. L. Shen, Y. T. Sun, Y. Z. Wu, Y. H. Chen, L. H. Yuan, W. Wang, H. S. Chen, J. Mol. Graph. Model., 38, 419–429 (2012).

30. C. R. Zhang, Z. J. Liu, Y. H. Chen, H. S. Chen, Y. Z. Wu, L. H. Yuan, J. Mol. Struct. (THEOCHEM), 899, 86–93 (2009).

31. P. S. Kumar, K. Vasudevan, A. Prakasam, M. Geetha, P. M. Anbarasan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 77, 45–50 (2010).

32. S. Xavier, S. Periandy, S. Ramalingam, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 137, 306–320 (2015).

33. Y. J. Jiang, Z. Liu, H. Liu, W. Y. Cui, N. Wang, D. Liu, X. W. Ge, Chin. Sci. Bull., 57, No. 34, 4448–4452 (2012).

34. L. Sinha, M. Karabacak, V. Narayan, M. Cinar, O. Prasad, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 109, 298–307 (2013).

35. N. R. Sheela, S. Muthu, S. Sampathkrishnan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 120, 237–251 (2014).

36. T. A. Koopmans, Physica, 1, 104–113 (1934).

37. R. G. Pearson, J. Am. Chem. Soc., 85, 3533–3539 (1963).

38. X. Zarate, E. Schott, T. Gomez, R. Arratia-Perez, J. Phys. Chem. A, 117, 430–438 (2013).

39. R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys., 68, 3801–3807 (1978).

40. A. Srivastava, P. Rawat, P. Tandon, R. N. Singh, Comput. Theor. Chem., 993, 80–89 (2012).

41. V. Balachandran, S. Rajeswari, S. Lalitha, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 124, 277–284 (2014).

42. R. G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc., 121, 1922–1924 (1999).

43. H. Tanak, M. Toy, J. Mol. Struct., 1068, 189–197 (2014).

44. Y. Shyma Mary, P. J. Jojo, C. Van Alsenoy, M. Kaur, M. S. Siddegowda, H. S. Yathirajan, H. I. S. Nogueira, S. M. A. Cruz, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 120, 370–380 (2014).

45. P. Politzer, P. R. Laurence, K. Jayasuriya, Health Persp., 61, 191–202 (1985).

46. J. Bevan Ott, J. Boerio-Goates, Calculations from Statistical Thermodynamics, Academic Press (2000).


Review

For citations:


Saleh Z.A., Novir S.B., Balali E. QUANTUM CHEMICAL INVESTIGATION OF trans- and cis-ISOMERS OF FLUPENTIXOL AS A NANO-DRUG. Zhurnal Prikladnoii Spektroskopii. 2019;86(6):1007(1)-1007(10).

Views: 347


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)