Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

THE IMPACT OF SOLVENT POLARITY ON THE STABILITY, ELECTRONIC PROPERTIES, AND 1H NMR CHEMICAL SHIFT OF THE CONFORMERS OF 2-CHLORO-3-METHYLCYCLOHEXAN-1-ONE OXIME: A CONCEPTUAL DFT APPROACH

Abstract

In this article, the stability of the conformers of 2-chloro-3-methylcyclohexan-1-one oxime was investigated at the wB97XD/6-311G(d,p) level of theory. Using the self-consistent reaction field theory (SCRF) based on the Polarizable Continuum Model (PCM), the solvent impacts were examined. Solvent influence on the total energy, relative energy, dipole moment, the energies of frontier orbitals, and proton chemical shift of these molecules was investigated. The associations between these parameters and solvent polarity functions including both the dielectric constant (e) and refractive index (nD) of the liquid medium were found. Moreover, NBO analysis was used to illustrate the hyperconjugative anomeric effect on the conformers.

About the Authors

N. N. Milani
Arak branch, Islamic Azad University
Islamic Republic of Iran

Department of Chemistry

Arak



R. Ghiasi
East Tehran Branch, Islamic Azad University
Islamic Republic of Iran

Department of Chemistry

Tehran



A. Forghaniha
Arak branch, Islamic Azad University
Islamic Republic of Iran

Department of Chemistry

Arak



References

1. E. Juaristi, Y. Bandala, In: Advances in Heterocyclic Chemistry, 189–222 (2012).

2. E. Juaristi, G. Cuevas, Tetrahedron, 48, 5019 (1992).

3. A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer, Berlin (1983).

4. R. U. Lemieux, Pure Appl. Chem., 25, 527 (1971).

5. E. Juaristi, G. Cuevas, The Anomeric Effect, CRC Press, Boca Raton (1995).

6. O. Takahashi, K. Yamasaki, Y. Kohno, K. Ueda, H. Suezawa, M. Nishio, Carbohydr. Res., 344, 1225 (2009).

7. A. R. Katritzky, P. J. Steel, S. N. Denisenko, Tetrahedron, 57, 3309 (2001).

8. J. T. Edward, Chem. Ind. (London), 1102 (1955).

9. C. B. Anderson, D. T. Sepp, J. Org. Chem., 32, 607 (1967).

10. C. Altona, C. Romers, H. R. Buys, E. Havinga, Top. Stereochem., 4, 39 (1969).

11. B. Fuchs, A. Ellencweig, E. Tartakovsky, P. Aped, Angew. Chem. Int. Ed., 25, 287 (1986).

12. K. B. Wiberg, W. F. Bailey, K. M. Lambert, Z. D. Stempel, J. Org. Chem., 83, 5242 (2018).

13. S. Tanaka, D. Kojić, R. Tsenkova, M. Yasui, Carbohydr. Res., 463, 40 (2018).

14. F. A. Martins, J. M. Silla, M. P. Freitas, Carbohydr. Res., 451, 29 (2017).

15. B. Linclau, S. Golten, M. Light, M. Sebban, H. Oulyadi, Carbohydr. Res., 346, 1129 (2011).

16. M. P. Freitas, R. Rittner, C. F. Tormena, R. J. Abraham, J. Phys. Org. Chem., 21, 505 (2008).

17. S. S. Erdem, T. Varnali, V. Aviyente, J. Phys. Org. Chem., 196 (1997).

18. T. Liu, F. Yuan, B. C. Li, Z. Y. Yu, J. Mol. Struct.: THEOCHEM, 951, 82 (2010).

19. K. Omoto, K. Marusaki, H. Hirao, M. Imade, H. Fujimoto, J. Phys. Chem. A, 104, 6499 (2000).

20. L. E. Martins, M. P. Freitas, J. Phys. Org. Chem., 21, 881 (2008).

21. L. B. Favero, W. Caminati, B. Velino, Phys. Chem. Chem. Phys., 5, 4776 (2003).

22. H. Roohi, A. Ebrahimi, J. Mol. Struct.: THEOCHEM, 726, 141 (2005).

23. V. Venkatesan, K. S. Viswanathan, J. Mol. Struct., 988, 79 (2011).

24. R. Haist, R. Mews, H. Oberhammer, Mendeleev Commun., 16, 134 (2006).

25. S. E. Denmark, M. S. Dappen, N. L. Sear, R. T. Jacobs, J . Am. Chem. Soc., 112, 3466 (1990).

26. P. Selvarengan, P.Kolandaivel, J Mol Struct: THEOCHEM, 617, 99 (2002).

27. S. B. Allin, T. M.Leslie, R. S. Lumpkin, Chem. Mater., 8, 428 (1996).

28. A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, H. Lischka, J. Phys. Chem. A, 106, 1862 (2002).

29. M. Springborg, Specialist Periodical Reports: Chemical Modelling, Applications and Theory, Vol. 5, Royal Society of Chemistry, Cambridge, UK (2008).

30. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 105, 2999 (2005).

31. M. Rezazadeh, R. Ghiasi, S. Jamehbozorgi, J. Struct. Chem., 59, 245 (2018).

32. R. Ghiasi, F.Zafarniya, S. Ketabi, Russ. J. Inorg. Chem., 62, 1371 (2017).

33. H. Alavi, R. Ghiasi, J. Struct. Chem., 58, 30 (2017).

34. F. Zafarniya, R.Ghiasi, S. Jameh-Bozorghi, Phys. Chem. Liquids, 55, 444 (2017).

35. F. Zafarnia, R. Ghiasi, S. Jamehbozorgi, J. Struct. Chem., 58, 1324 (2017).

36. N. Sadeghi, R. Ghiasi, R. Fazaeli, S. Jamehbozorgi, J. Appl. Spectrosc., 83, 909 (2016).

37. R. Ghiasi, A. Peikari, Phys. Chem. Liquids, 55, 421 (2017).

38. R. Ghiasi, A. Peikari, Russ. J. Phys. Chem. A, 90, 2211 (2016).

39. R. Ghiasi, A. Peikari, J. Appl. Spectrosc., 84, 148 (2017).

40. R. Ghiasi, H. Pasdar, S. Fereidoni, Russ. J. Inorg. Chem., 61, 327 (2016).

41. R. Ghiasi, M. Nemati, A. H.Hakimioun, J. Chil. Chem. Soc., 61, 2921 (2016).

42. A. Peikari, R. Ghiasi, H. Pasdar, Russ. J. Phys. Chem. A, 89, 250 (2015).

43. R. Ghiasi, E. Amini, J. Struct. Chem., 56, 1483 (2015).

44. M.Z. Fashami, R. Ghiasi, J. Struct. Chem., 56, 1474 (2015).

45. M. Rezazadeh, R. Ghiasi, S. Jamehbozorgi, J. Appl. Spectrosc., 85, 926 (2018).

46. F. Rezaeyani, R. Ghiasi, M. Yousefi, Russ. J. Phys. Chem. A, 92, 1748 (2018).

47. M. Rahimi, R. Ghiasi, J. Mol. Liquids, 265, 164 (2018).

48. R. Ghiasi, J. Mol. Liquids, 264, 616 (2018).

49. A. Taha, A. A. M. Farag, A. H. Ammar, H. M. Ahmed, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 122, 512 (2014).

50. A. Taha, O. M. I. Adly, M. Shebl, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 140, 74 (2015).

51. R. E. Skyner, J. L. McDonagh, C. R. Groom, T. V. Mourika, J. B. O. Mitchell, Phys. Chem. Chem. Phys., 17, 6174 (2015).

52. R. Kar, S. Pal, Int. J. Quantum Chem., 110, 1642 (2010).

53. B. Jovića, A. Nikolića, S. Petrovićb, B. Kordića, T. Đaković-Sekulića, N. Stojanović, J. Struct. Chem., 55, 1616 (2014).

54. Y.-K. Li, H.-Y. Wu, Q. Zhu, K.-X. Fu, X.-Y. Li, Computat. Theor. Chem., 971, 65 (2011).

55. J. Basavaraja, S. R. Inamdar, H. M. S. Kumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 137, 527 (2015).

56. G. Ersan, O. G. Apul, T. Karanfil, Water Res., 98, 28 (2016).

57. D. Li, Y. Wanga, K. Han, Coord. Chem. Rev., 256, 1137 (2012).

58. G. Song, Y. Su, R. A. Periana, R. H. Crabtree, K. Han, H. Zhang, X. Li, Angew. Chem. Int. Ed., 49, 912 (2010).

59. H. Wang, Y. Wang, K.-L. Han, X.-J. Peng, J. Org. Chem., 70, 4910 (2005).

60. D. Li, X. Huang, K. Han, C.-G. Zhan, J. Am. Chem. Soc., 133, 7416 (2011).

61. R. Ghiasi, M.Z. Fashami, J. Theor. Comput. Chem., 13, 1450041-1 (2014).

62. N. Shajari, R. Ghiasi, J. Struct. Chem., 59, 541 (2018).

63. Gaussian-09, Inc., Wallingford CT (2009).

64. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 72, 650 (1980).

65. A.D. McLean, G.S. Chandler, J. Chem. Phys., 72, 5639 (1980).

66. L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, J. L. Radom, J. Chem. Phys., 103, 6104 (1995).

67. J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615 (2008).

68. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 88, 899 (1988).

69. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2013).

70. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 105, 2999 (2005).

71. K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc, 112, 8251 (1990).

72. F. Weinhold, Discovering Chemistry with Natural Bond Orbitals, Wiley, Hoboken, New Jersey (2012).

73. C. L. Perrin, K. B. Armstrong, M. A. Fabian, J. Am. Chem. Soc., 116, 715 (1994).

74. N. Mataga, T. Kubota, Molecular Interactions and Electronic Spectra, Marcel Dekker, New York (1970).

75. A. Kawski, Progress in Photochemistry and Photophysics, Ed. J. F. Rabek, CRC Press Boca Raton, Boston, 1–47 (1992).

76. A. Kawski, B. Pasztor, Acta Phys. Pol., 29, 187 (1966).

77. A. Kawski, U. Stefanowska, Acta Phys. Pol., 28, 809 (1965).

78. A. Kawski, Acta Phys. Pol., 28, 647 (1965).

79. A. Kawski, Acta Phys. Pol., 25, 285 (1964).

80. C. Reichardt, T. Welton, Solvents and Solvent Efects in Organic Chemistry, 4-th Ed., Wiley Verlag, Weinheim (2011).


Review

For citations:


Milani N.N., Ghiasi R., Forghaniha A. THE IMPACT OF SOLVENT POLARITY ON THE STABILITY, ELECTRONIC PROPERTIES, AND 1H NMR CHEMICAL SHIFT OF THE CONFORMERS OF 2-CHLORO-3-METHYLCYCLOHEXAN-1-ONE OXIME: A CONCEPTUAL DFT APPROACH. Zhurnal Prikladnoii Spektroskopii. 2019;86(6):1008(1)-1008(9).

Views: 365


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)