Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

OPTICAL PROPERTIES OF POROUS ALUMINA CERAMICS WITH MICRON OPEN CELLS

Abstract

Porous ceramic material is widely used in a great deal of fields. In this work, porous alumina ceramics with micron open cells are modeled by applying the inverse opal structure. The considered porous alumina ceramics are periodic with different size parameters. The diameters of spherical pores are 200, 400, 600, and 800 nm, while the ratios of height to diameter range from 0.1 to 0.9. The absorptivity, transmissivity, and reflectivity for the wavelength range from 0.2 to 2 μm are calculated using the finite difference time domain (FDTD) method. Then the effects of size parameters and incident angle on the optical properties are discussed. The results show that the absorptivity is usually very small. For the transmissivity, a wide dip in the transmission spectrum appears when the diameter and height exceed the critical values, and a red shift of the transmission spectrum’s wide dip with increasing height is observed. When the incident wavelength is longer than the critical wavelength, the spectral transmissivities of porous ceramics with a certain diameter reach a stable domain. Moreover, the red shift of the wide dip, the critical incident wavelength, and the critical ratio of height to diameter are visibly affected by the size parameters and the incident angle.

About the Authors

B. Liu
School of Energy Science and Engineering, Harbin Institute of Technology
China
Harbin 150001


Ch. Sun
School of Energy Science and Engineering, Harbin Institute of Technology
China
Harbin 150001


X. Chen
School of Energy Science and Engineering, Harbin Institute of Technology
China
Harbin 150001


X. Xia
School of Energy Science and Engineering, Harbin Institute of Technology
China
Harbin 150001


References

1. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, K. M. Ho, Appl. Phys. Lett., 74, 3933–3935 (1999).

2. A. Richel, N. P. Johnson, D. W. Mccomb, Appl. Phys. Lett., 76, 1816–1818 (2000).

3. H. Míguez, F. Meseguer, C. López, F. López-Tejeira, J. Sánchez-Dehesa, Adv. Mater., 13, 393–396 (2001).

4. Daimu Muto, Shinobu Hashimoto, Sawao Honda, Yusuke Daiko, Yuji Iwamoto, Ceram. Int., 44, 3678–3683 (2017).

5. H. Asoh, A. Uehara, S. Ono, Jpn. J. Appl. Phys., 43, L1159–L1161 (2014).

6. J. E. G. J. Wijnhoven, L. Bechger, W. L. Vos, Chem. Mater., 13, 4486–4499 (2001).

7. J. E. G. J. Wijnhoven, W. L. Vos, Science, 281, 802–804 (1998).

8. A. A. Miskevich, V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 151, 260–268 (2015).

9. A. A. Miskevich, V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 112, 1082–1089 (2011).

10. V. A. Loiko, A. A. Miskevich, Opt. Spectrosc., 122, 799–812 (2017).

11. K. P. Furlan, R. M. Pasquarelli, T. Krekeler, M. Ritterb, R. Zieroldc, K. Nielschc, G. A. Schneidera, R. Janssen, Ceram. Int., 43, 11260–11264 (2017).

12. S. S. Bristy, M. A. Rahman, K. Tauer, H. Minamic, H. Ahmad, Ceram. Int., 44, 3951–3959 (2018).

13. Ruixia Shi, Yaru Shang, Yan Zhang, Peng Wang, Aiyu Zhang, Ping Yang, Ceram. Int., 44, 3741–3750 (2017)

14. A. Bakken, S. Wagner, M. J. Hoffmann, B. Thorstensen, M. A. Einarsrud, T. Grande, J. Eur. Ceram. Soc., 38, 665–670 (2017).

15. Xiaoyun Song, Qingxin Guan, Zitao Cheng, Wei Li, Appl. Catal. B: Environ., 227, 13–23 (2018).

16. M. Gallei, Macromol. Rapid. Commun., 39, 1700648 (2017).

17. A. A. Miskevich, V. A. Loiko, J. Exp. Theor. Phys., 113, 1 (2011).

18. G. Contento, M. Oliviero, N. Bianco, V. Naso, Int. J. Heat Mass Transf., 76, 499–508 (2014).

19. G. Von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tétreault, S. Wong, V. Kitave, G. A. Ozin, Appl. Phys. Lett., 84, 224–226 (2004).

20. X. Yu, Y. J. Lee, R. Furstenberg, J. O. White, P. V. Braun, Adv. Mater., 19, 1689–1692 (2007).

21. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljacic, I. Celanovic, Proc. Natl. Acad. Sci., 109, 2280–2285 (2012).

22. Y. B. Liu, R. Jin, J. Qiu, L. H. Liu, Int. J. Heat Mass Transf., 98, 833–844 (2016).

23. Z. Chen, N. Brandon, Ceram. Int., 42, 8316–8324 (2016).

24. V. A. Loiko, A. A. Miskevich, Opt. Spectrosc., 115, 274–282 (2013).

25. A. A. Miskevich, V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 136, 58–70 (2014).

26. R. Liu, Y. Li, C. A. Wang, S. Tie, Mater. Design., 63, 1–5 (2014).

27. F. Tian, L. Jing, J. Shi, M. Yang, Sensor. Actuator. B: Chem., 225, 312–318 (2016).

28. S. Li, C. A. Wang, J. Zhou, Ceram. Int., 39, 8833–8839 (2013).

29. A. M. Kapitonov, N. V. Gaponenko, V. N. Bogomolov, A. V. Prokofiev, S. M. Samoilovich, S. V. Gaponenko, Phys. Status Solidi (A), 165, 119–123 (1998).

30. R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, G. A. Schneide, J. Am. Ceram. Soc., 95, 2226–2235 (2012).

31. G. Guan, K. Kusakabe, H. Ozono, M. Taneda, M. Uehara, H. Maeda, Chem. Eng. J., 135, 232–237 (2008).

32. M. Munro, J. Am. Ceram. Soc., 80, 1919–1928 (1997).

33. S. Mallakpour, M. Dinari, Mater. Res. Bull., 48, 3865–3872 (2013).

34. K. Noh, K. S. Brammer, T. Y. Seong, S. Jin, Nano, 06, 541–555 (2011).

35. M. Cárdenas, T. Arnebrant, A. Rennie, G. Fragneto, R. K. Thomas, L. Lindh, Biomacromolecules, 8, 65–69 (2007).

36. I. Vlassiouk, A. Krasnoslobodtsev, S. Smirnov, M. Germann, Langmuir, 2004, 20, 9913–9915 (2004).

37. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando (1985).

38. K. S. Yee, IEEE Trans. Anten. Propag., 14, 302–307 (1966).

39. Y. B. Chen, Z. M. Zhang, Opt. Commun., 269, 411–417 (2007).


Review

For citations:


Liu B., Sun Ch., Chen X., Xia X. OPTICAL PROPERTIES OF POROUS ALUMINA CERAMICS WITH MICRON OPEN CELLS. Zhurnal Prikladnoii Spektroskopii. 2019;86(6):1010(1)-1010(8).

Views: 293


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)