Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

QUANTITATIVE ANALYSIS OF TRANS FATTY ACIDS IN COOKED SOYBEAN OIL USING TERAHERTZ SPECTRUM

Abstract

A method for the quantitative analysis of trans fatty acids (TFAs) in cooked soybean oil using terahertz (THz) spectrum is developed. The THz spectra of three groups of soybean oil samples that were cooked at different temperatures for various times were measured using a terahertz time-domain spectrum system (THz-TDS)with frequency range of 0.2-1.5 THz. A partial least squares (PLS) regression model based on the whole THz spectrum was constructed to predict the TFAs content in the cooked soybean oil samples. To reduce noise and improve the prediction accuracy of the model, a subinterval PLS (sub-PLS) model based on a part of the THz spectrum was constructed. This sub-PLS had high accuracy in predicting the TFAs content in cooked soybean oil samples (R = 0.987 and RMSECV = 0.956).

About the Authors

F. Y. Lian
Henan University of Technology
China

Grain Information Processing and Control, Key Laboratory of Ministry of Education; Grain Photoelectric Detection and Control, Key Laboratory of Henan Province

Zhengzhou


H. Y. Ge
Henan University of Technology
China

Grain Information Processing and Control, Key Laboratory of Ministry of Education; Grain Photoelectric Detection and Control, Key Laboratory of Henan Province

Zhengzhou


X. J. Ju
Collaborative Innovation Center of Henan Grain Crops
China
Zhengzhou


Y. Zhang
Henan University of Technology
China

Grain Information Processing and Control, Key Laboratory of Ministry of Education; Grain Photoelectric Detection and Control, Key Laboratory of Henan Province

Zhengzhou


M. X. Fu
Henan University of Technology
China

Grain Information Processing and Control, Key Laboratory of Ministry of Education; Grain Photoelectric Detection and Control, Key Laboratory of Henan Province

Zhengzhou


References

1. R. Ascensión, S. Isabel, C.V. Carmen, J. Chem., 2014, No. 38, 1–8 (2015).

2. J. M. Cortés, R. Sanchez, A. Vazquez, J. Agric. Food Chem., 54, No. 19, 6963 (2006).

3. M. G. Qian, H. Zhang, K. Z. Jiang, Food Chem., 166, 23–28 (2015).

4. M. A. Hossain, S. M. Salehuddin, Arab. J. Chem., 5, No. 3, 391–396 (2012).

5. D. Caroline, T. Angélique, S. Louise, Food Anal. Methods, 8, No. 6, 1425–1435 (2015).

6. C. X. Yuan, Y. Y. Xie, Y. X. Ju, Food Anal. Methods, 10, No. 11, 1–7 (2017).

7. Y. Tehseen, D. W. Sun, J. H. Cheng, Trend. Food Sci. Technol., 62, 177–189 (2017).

8. A. Ahmet, O. A. Swesi, B. S. Alhatab, J. Mol. Struct., 1128, 590–605 (2017).

9. B. Muik, B. Lendl, Chem. Phys. Lipids, 134, No. 2, 173–182 (2005).

10. X. P. Fu, Y. B. Ying, Crit. Rev. Food Sci. Nutr., 56, No. 11, 1913–1924 (2016).

11. H. Azizian, J. K. G. Kramer, J. Am. Oil Chem. Soc., 89, No. 12, 2143–2154 (2012).

12. H. Zhan, J. Xi, L. Xiao, Food Control, 67, 114–118 (2016).

13. J. Li, IEEE Trans. Instrum. Meas., 59, No. 8, 2094–2098 (2010).

14. F. S. Vieira, C. Pasquini, Anal. Chem. 86, No. 8, 3780–3786 (2014).

15. B. Ferguson, X. C. Zhang, Physics, 1, No. 1, 26–33 (2002).

16. F. Zhao, S. M. Long, Y. Zhang, Acta Phys. Sin., 64, No. 2, 24202 (2015).

17. E. Hérault, F. Garet, J. L. Coutaz, IEEE Trans. Terahertz Sci. Technol.,6, No. 1, 12–19 (2016).

18. J. S. Melinger, N. Laman, D. Grischkowsky, Appl. Phys. Lett., 93, No. 1, 44 (2008).

19. M. Y. Liang, J. L. Shen, G. Q. Wang, J. Phys. D, 41, No. 13, 135306 (2008).

20. K. Q. Wang, D. W. Sun, H. B. Pu, Trends Food Sci. Technol., 67, 93–105 (2017).

21. F. Y. Lian, D. G. Xu, Y. Zhang, IEEE Trans. Terahertz Sci. Technol., 7, No. 4, 378–384 (2017).

22. H. Y. Ge, Y. J. Jiang, S. H. Xia, Food Chem., 209, 286–292 (2016).

23. Y. J. Jiang, H. Y. Ge, S. H. Xia, Sci. Rep., 6, 21299 (2016).

24. I. Pupeza, R. Wilk, M. Koch, Opt. Express, 15, No.7, 4335–4350 (2007).

25. X. L. Zhao, J. S. Li, Int. Photon. Optoelectron. Meet., 276, No. 1, 012234 (2011).

26. Y. Zhang, X. H. Peng, X.C. Zhang, Chem. Phys. Lett., 452, No. 1, 59–66 (2008).

27. O. O. Olaoluwa, B. Isa, S. M. Lembe, Sci. Horticult., 199, 229–236 (2016).

28. D. C. Gu, M. J. Zou, C. H. Xu, Food Chem., 229, 458–463 (2017).

29. H. Y. Ge, Y. Y. Jiang, S. H. Xia, Sensors, 15, No. 6, 12560–12572 (2015).

30. W. K. Jia, D. A. Zhao, C. L. Hu, Appl. Intellig., 43, No. 1, 176–191 (2015).

31. B. M. Nicolai, K. Beullens, J. Lammertyn, Postharvest Biol. Technol., 45, No. 2, 99–118 (2007).

32. M. Naftaly, R. E. Miles, Proc. IEEE, 95, No. 8, 1658–1665 (2007).

33. F. Zhang, O. Kambara, M. Hayashi, RSC Adv., 4, No. 1, 269–278 (2015).

34. A. I. McIntosh, B. Yang, R. S. Chem. Phys. Lett., 558, No. 2, 104–108 (2013).

35. W. Withayachumnankul, B. M. Fischer, D. Abbott, J. Opt. Soc. Am. B, 25, No. 6, 1059–1072 (2018).


Review

For citations:


Lian F.Y., Ge H.Y., Ju X.J., Zhang Y., Fu M.X. QUANTITATIVE ANALYSIS OF TRANS FATTY ACIDS IN COOKED SOYBEAN OIL USING TERAHERTZ SPECTRUM. Zhurnal Prikladnoii Spektroskopii. 2019;86(5):837(1)-837(9).

Views: 252


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)