Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ESTIMATION OF CHLOROPHYLL CONTENT IN APPLE LEAVES BASED ON IMAGING SPECTROSCOPY

Abstract

To promote the use of imaging spectroscopy to assess the nutritional status of apple trees, the models to estimate the chlorophyll content of apple leaves were explored. Spectral data for apple leaves were collected with an imaging spectrometer and then preprocessed with the nine-point moving weighted average method. Correlation analyses were conducted between chlorophyll content and mathematically transformed spectral data. Wavelengths sensitive to chlorophyll content were selected on the basis of the highest correlation coefficients, and partial least squares (PLS), support vector machine (SVM), and random forest (RF) models to estimate chlorophyll content were established and tested. The wavelengths sensitive to chlorophyll content were 414, 424, 429, 439, and 577 nm. The best model was the SVM model with wavelength data subjected to a second order differential of the logarithm transformation (lgR414)², (lgR424)², (lgR429)², (lgR439)², (lgR577)² as the independent variables. For this model, the coefficient of determination V-R2 was 0.7372, the root mean square error V-RMSE was 0.4477, and the residual predictive deviation V-RPD was 1.8810. Among all the models, this SVM model had the highest V-R2 and V-RPD values and the lowest V-RMSE value.

About the Authors

Ruiyang Yu
College of Resources and Environment, Shandong Agricultural University
China
Tai’an, 271018


Xicun Zhu
College of Resources and Environment, Shandong Agricultural University; Key Laboratory of Agricultural Ecology and Environment, Shandong Agricultural University
China
Tai’an, 271018


Shujing Cao
College of Resources and Environment, Shandong Agricultural University
China
Tai’an, 271018 


Jingling Xiong
College of Resources and Environment, Shandong Agricultural University
China
Tai’an, 271018 


Xin Wen
College of Resources and Environment, Shandong Agricultural University
China
Tai’an, 271018 


Yuanmao Jiang
College of Horticulture Science and Engineering, Shandong Agricultural University
China
Tai’an 271018


Gengxing Zhao
College of Resources and Environment, Shandong Agricultural University
China
Tai’an, 271018 


References

1. X. G. Xu, C. J. Zhao, J. H. Wang, W. J. Huang, C. J. Li, H. J. Liu, Spectrosc. Spect. Anal., 31 , 188–191 (2011).

2. D. N. H. Horler, J. Barber, J. P. Darch, D. C. Ferns, A. R. Barringer, Adv. Space Res., 3 , 175–179 (1983).

3. A. Maccioni, G. Agati, P. Mazzinghi, J. Photochem. Photobiol. B, 61 , 52–61 (2001).

4. V. Ciganda, A. Gitelson, J. Schepers, J. Plant Physiol., 166 , 157–167 (2009).

5. M. Schlemmer, A. Gitelson, J. Schepers, R. Ferguson, Y. Peng, J. Shanahan, D. Rundquist, Int. J. Appl. Earth Observ., 25 , 47–54 (2013).

6. E. R. Hunt Jr , P. C. Doraiswamy, J. E. McMurtrey, C. S. T. Daughtry, E. M. Perry, B. Akhmedov, Int. J. Appl. Earth Observ., 21 , 103–112 (2013).

7. Z. N. Gong, Y. L. Zhao, W. J. Zhao, C. Lin, T. X. Cui, Acta Ecologica Sinica, 34 , 5736–5745 (2014).

8. X. C. Zhu, G. X. Zhao, R. Y. Wang, F. Dong, L. Wang, T. Lei, Sci. Agricult. Sinica, 43 , 1189–1197 (2010).

9. X. J. Yue, D. P. Quan, T. S. Hong, J. Wang, X. M. Qu, H. M. Gan, Trans. CSAE, 31 , 294–302 (2015).

10. S. W. Wang, S. Zhao, C. L. Zhang, Z. B. Su, L. F. Wang, Y. Zhao, Trans. CSAE, 32 , 149–154 (2016).

11. H. S. Li, Plant Physiology and Biochemistry Experimental Principles and Techniques, Beijing, Higher Education Press, 45 (2000).

12. T. He, Study on Land Quality Hyperspectral Remote Sensing Monitoring Method, Wuhan University, Wuhan, 44–54 (2003).

13. Y. He, F. Liu, X. L. Li, Y. N. Shao, Spectroscopy and Imaging Technology in Agriculture, Science Press, Beijing, 93, 109, 145 (2016).

14. N. Cristianini, J. S. Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Method, Publishing House of Electronics Industry, Beijing, 24–26 (2004).

15. H. Yan, X. G. Zhang, Y. Q. Ma, Y. D. Li, Acta Automat. Sinica, 28 , 450–455 (2002).

16. L. Breiman, Machine Learning, 45 , 5–32 (2001).

17. E. Gaston, J. M. Frias, P. J. Cullen, C. P. O’Donnell, A. A. Gowen, J. Agr. Food Chem., 58 , 6226–6233 (2010).


Review

For citations:


Yu R., Zhu X., Cao Sh., Xiong J., Wen X., Jiang Yu., Zhao G. ESTIMATION OF CHLOROPHYLL CONTENT IN APPLE LEAVES BASED ON IMAGING SPECTROSCOPY. Zhurnal Prikladnoii Spektroskopii. 2019;86(3):425-432.

Views: 372


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)