Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

OPTICAL ABSORPTION OF A COMPOSITE BASED ON BILAYER METAL-DIELECTRIC SPHERICAL NANOPARTICLES

Abstract

We investigated the optical properties of nanoparticles of the core-metal shell type and the composites based on them in the classical approximation. The frequency dependences of the real and imaginary parts of the dielectric permeability of bilayer particles, as well as the absorption coefficient of the composites based on them, are calculated. We established the existence of small-scale oscillations of the real and imaginary parts of the dielectric permeability and absorption coefficient in the low-frequency region of the spectrum. The behavior of the dielectric function of bilayer nanoparticles for the limiting cases of thin and thick shells is analyzed. The influence of the effective mean free path of electrons on the optical characteristics of bilayer nanoparticles is considered. The presence of two maxima of the absorption coefficient of the composite due to the hybridization of polar modes is demonstrated.

About the Authors

A. V. Korotun
National University “Zaporizhzhia Politechnic”
Ukraine
69063, Zaporizhzhia


A. A. Koval’
National University “Zaporizhzhia Politechnic”
Ukraine
69063, Zaporizhzhia


I. N. Titov
UAD Systems
Ukraine
69002, Zaporizhzhia


References

1. B. N. Khlebtsov, N. G. Khlebtsov. J. Quant. Spectrosc. RA, 107 (2007) 306—314

2. K. Tanabe. J. Phys. Chem., 112 (2008) 15721—15728

3. M. G. Blaber, M. D. Arnold, M. J. Ford. J. Phys. Chem. Lett., 113 (2009) 3041—3045

4. H. Y. Chung, H. Y. Xie, P. T. Leung, D. P. Tsai. Sol. State Commun., 149 (2009) 2151—2155

5. M. A. Garcia. J. Phys. D: Appl. Phys., 44 (2011) 283001

6. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, M. A. Iatì. J. Phys.: Condens. Matter, 29 (2017) 203002

7. V. Yu. Reshetnyak, I. P. Pinkevych, T. J. Sluckin, A. M. Urbas, D. R. Evans. Eur. Phys. J. Plus, 133 (2018) 373

8. Y. Ye, T. P. Chen, Z. Liu, X. Yuan. Nanoscale Res. Lett., 13 , N 1 (2018) 299 (11pp.)

9. В. И. Балыкин, П. Н. Мелентьев. УФН, 188 , № 2 (2018) 143—168

10. А. В. Коротун, А. А. Коваль, В. И. Рева. Журн. прикл. спектр., 86 , № 4 (2019) 549—556 [ A. V. Korotun, A. A. Koval’, V. I. Reva. J. Appl. Spectr., 86 (2019) 606—612]

11. N. Kalyaniwalla, J. W. Haus, R. Inguva, M. H. Birnboim. Phys. Rev. A, 42 , N 9 (1990) 5613—5621

12. R. D. Averitt, S. L. Westcott, N. J. Halas. J. Opt. Soc. Am. B, 16 , N 10 (1999) 1824—1832

13. B. Khlebtsov, L. Dykman, V. Bogatyrev, V. Zharov, N. Khlebtsov. Nanoscale Res. Lett., 2 (2007) 6—11

14. C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, R. Drezek. Opt. Lett., 30 , N 9 (2005) 1012—1014

15. D. Pissuwan, S. M. Valenzuela, M. B. Cortie. Trends Biotech., 24 , N 2 (2006) 62—67

16. X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed. Las. Med. Sci., 23 (2008) 217—228

17. G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, N. Khlebtsov. Nanotech., 19 (2008) 015701

18. А. И. Сидоров. ЖТФ, 76 , № 10 (2006) 136—139

19. J. A. Gordon, R. W. Ziolkowski. Opt. Express, 15 , N 5 (2007) 2622—2653

20. Н. Г. Хлебцов, В. А. Богатырев, Л. А. Дыкман, Б. Н. Хлебцов. Рос. нанотехнол., 2 (2007) 69—86

21. J. Li, G. Sun, C. T. Chan. Phys. Rev. B, 73 (2006) 075117

22. C. Tserkezis, G. Gantzounis, N. Stefanou. J. Phys.: Condens. Matter, 20 (2008) 075232

23. A. V. Goncharenko. Chem. Phys. Lett., 386 (2004) 25—31

24. Г. ван де Хюлст. Рассеяние света малыми частицами, Москва, ИИЛ (1961) 92

25. U. Kreibig, M. Volmer. Optical Properties of Metal Clusters, Berlin, Springer (1995) 81

26. W. A. Kraus, G. C. Schatz. J. Chem. Phys., 79 (1983) 6130—6139

27. N. I. Grigorchuk, P. M. Tomchuk. Phys. Rev. B, 84 , N 8 (2011) 085448

28. П. М. Томчук, Д. В. Бутенко. УФЖ, 60 , № 10 (2015) 1043—1049

29. C. G. Granqvist, O. Hunderi. J. Phys. B, 30 (1978) 47—51

30. S. M. Kachan, A. N. Ponyavina. J. Mol. Struct., 563-564 (2001) 267—272

31. Н. Ашкрофт, Н. Мермин. Физика твердого тела. Т. 1, Москва, Мир (1979) 20, 25

32. C. Fall. Ab initio Study of the Work Functions of Elemental Metal Crystals, Lausanne, EPFL (1999)

33. А. Анималу. Квантовая теория кристаллических твердых тел, Москва, Мир (1981) 244

34. У. Харрисон. Теория твердого тела, Москва, Мир (1972) 148

35. P. B. Johnson, R. W. Christy. Phys. Rev. B, 6 (1972) 4370—4379

36. I. I. Shaganov, T. S. Perova, K. Berwick. Photon. Nanostruct. – Fundam. Applicat., 27 (2017) 24

37. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. Science, 302 (2003) 419—422


Review

For citations:


Korotun A.V., Koval’ A.A., Titov I.N. OPTICAL ABSORPTION OF A COMPOSITE BASED ON BILAYER METAL-DIELECTRIC SPHERICAL NANOPARTICLES. Zhurnal Prikladnoii Spektroskopii. 2020;87(2):224-232. (In Russ.)

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)