Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ULTRASENSITIVE FLUORESCENCE DETERMINATION OF 6-THIOGUANINE IN BIOLOGICAL SAMPLES BASED ON THE SILVER NANOPARTICLE-MEDIATED RELEASE OF ACRIDINE ORANGE PROBE

Abstract

This article reports a simple, convenient, and very sensitive method for the determination of 6-thioguanine (6-TG). The basic phenomenon in the proposed method is fluorescence resonance energy transfer, where acridine orange (AO) act as a donor and citrate-stabilized silver nanoparticles (AgNPs) as an acceptor. A noncovalent bond between the surfaces of AgNPs and AO was found, and the effect of fluorescence quenching was observed. The fluorescence spectra of AO recovered after further addition of 6-TG are responsible for the aggregation of AgNPs. Under ideal conditions, the linear relationship of 6-TG in the concentration range of 0.005 to 0.04 μM was displayed, and the limit of detection of 6-TG was obtained as 5.3 nM. Under ideal conditions, the linear relationship of 6-TG was displayed in the concentration range of 0.005 to 0.04 μM, and the limit of detection of 6-TG was obtained as 5.3 nM. The proposed method offers a rapid analysis to determine 6-TG in human serum, blood, and urine samples.

About the Authors

V. K. Verma
National Institute of Technology, CG
India

Department of Chemistry

492010, Raipur



K. Tapadia
National Institute of Technology, CG
India

Department of Chemistry

492010, Raipur



T. Maharana
National Institute of Technology, CG
India

Department of Chemistry

492010, Raipur



A. Sharma
National Institute of Technology, CG
India

Department of Chemistry

492010, Raipur



References

1. T. P. Huynh, A. Wojnarowicz, M. Sosnowska, S. Srebnik, T. Benincori, F. Sannicolo, F. D’Souza, W. Kutner, Biosens. Bioelectron, 70, 153–160 (2015).

2. A. A. Ensafi, H. Karimi-Maleh, J. Electroanal. Chem., 640, 75–83 (2010).

3. Munshi, N. Pashna, M. Lubin, J. R. Bertino, Oncologist, 19, 760–765 (2014).

4. H. Beitollahi, S. G. Ivari, M. T. Mahani, Mater. Sci. Eng. C, 69, 128–133 (2016).

5. Q. Gueranger, F. Li, M. Peacock, A. Larnicol-Fery, R. Brem, P. Macpherson, J. M. Egly, P. Karran, J. Invest. Dermatol., 134, 1408–1417 (2014).

6. M. T. Osterman, R. Kundu, G. R. Lichtenstein, J. D. Lewis, Gastroenterology, 130, 1047–1053 (2006).

7. R. Zakrzewski, J. Anal. Chem., 64, 1235–1241 (2009).

8. B. B. Prasad, R. Singh, A. Kumar, Carbon, 102, 86–96 (2016).

9. U. Hindorf, M. Lindqvist, C. Peterson, P. Soderkvist, M. Strom, H. Hjortswang, Inflamm. Bowel Dis., 55, 1423–1431 (2006).

10. G. Cangemi, A. Barabino, S. Barco, A. Parodi, S. Arrigo, G. Melioli, Int. J. Immunopathol. Pharmacol., 25, 435–444 (2012).

11. H. Li, X. Chong, Y. Chen, L. Yang, L. Luo, B. Zhao, Y. Tian, Colloids Surf. A, 493, 52–58 (2016).

12. Jacobsen, J. H. Schmiegelow, K. Nersting, J. Chromatogr. B, 881-882, 115–118 (2012).

13. S. A. Coultharda, P. Berry, S. McGarrity, A. Ansari, Christopher P. F. Redfern, J. Chromatogr. B, 1028, 175–180 (2016).

14. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, Hanqi Zhang, Spectrochim. Acta A, 107, 4–30 (2013).

15. X. Y. Deng, Y. Tang, L. H. Wu, L. J. Liu, X. Wang, Y. H. Chen, H. Q. Zhang, Y. Tian, Chin. J. Anal. Chem., 37, 79 (2009).

16. P. D. Tzanavaras, D. G. Themelis, A. Economou, Anal. Chim. Acta, 505, 167–171 (2004).

17. W. Wang, S. F. Wang, F. Xie, Sens. Actuat. B, 120, 238–244 (2016).

18. M. Amjadi, L. Farzampour, J. Lumin., 29, 689 (2014).

19. E. Mozioglu, M. Akgoz, T. Kocagoz, C. Tamerler, Anal. Methods, 8, 4017–4021 (2016).

20. Shi, Jingyu, F. Tian, J. Lyu, M. Yang, J. Mater. Chem. B, 35, 6989–7005 (2015).

21. J. N. Miller, Analyst, 130, 265–270 (2005).

22. P. Blaszkiewicz, M. Kotkowiak, A. Dudkowiak, J. Lumin., 183, 303–310 (2017).

23. Y. Chen, L. Chen, Y. Ou, L. Guo, F. Fu, Sens. Actuat. B: Chem., 233, 691–696 (2016).

24. Y. L. Xu, X. Y. Niu, H. J. Zhang, L. F. Xu, S. G. Zhao, H. L. Chen, X. G. Chen, J. Agric. Food Chem., 63, 1747–1755 (2015).

25. F. Gao, Q. Ye, P. Cui, X. Chen, M. Li, L. Wang. Anal. Methods, 3, 1180–1185 (2011).

26. K. H. Lee, S. J. Chen, J. Y. Jeng, Y. C. Cheng, J. T. Shiea, H. T. Chang, Colloid Interface Sci., 307, 340 (2007).

27. P. Liu, Y. Zhou, M. Guo, S. Yang, Nanoscale, 10, 848–855 (2018).

28. N. Y. Chena, H. F. Lia, Z. F. Gaoa, F. Qub, N. B. Lia, H. Q. Luoa, Sens. Actuat. B: Chem., 193, 730–736 (2014).

29. W. Leesutthiphonchai, W. Dungchai, W. Siangproh, N. Ngamrojnavanich, O. Chailapakul, Talanta, 85, 870–876 (2011).

30. U. P. Raghavendra, J. Thipperudrappa, M. Basanagouda, R. M. Melavanki, J. Lumin., 172, 139–146 (2016).

31. L. Farzampour, M. Amjadi, J. Lumin., 155, 226–230 (2014).

32. S. Qadri, A. Ganoe, Y. Haik, J. Hazard. Mater., 169, 318–323 (2009).

33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer, New York (1999).

34. G. L. Wang, W. M. Dong, X. Y. Zhu, W. J. Zhang, C. Wang, H. J. Jiao, Analyst, 136, 5256–5260 (2011).

35. H. C. Dai, Y. Shi, Y. L. Wang, Y. J. Sun, J. T. Hu, P. J. Ni, Sens. Actuat. B: Chem., 202, 201–208 (2014).

36. A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Environ. Sci. Technol., 44, 1260–1266 (2010).


Review

For citations:


Verma V.K., Tapadia K., Maharana T., Sharma A. ULTRASENSITIVE FLUORESCENCE DETERMINATION OF 6-THIOGUANINE IN BIOLOGICAL SAMPLES BASED ON THE SILVER NANOPARTICLE-MEDIATED RELEASE OF ACRIDINE ORANGE PROBE. Zhurnal Prikladnoii Spektroskopii. 2020;87(2):345(1)-345(8).

Views: 367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)