ULTRASENSITIVE FLUORESCENCE DETERMINATION OF 6-THIOGUANINE IN BIOLOGICAL SAMPLES BASED ON THE SILVER NANOPARTICLE-MEDIATED RELEASE OF ACRIDINE ORANGE PROBE
Abstract
This article reports a simple, convenient, and very sensitive method for the determination of 6-thioguanine (6-TG). The basic phenomenon in the proposed method is fluorescence resonance energy transfer, where acridine orange (AO) act as a donor and citrate-stabilized silver nanoparticles (AgNPs) as an acceptor. A noncovalent bond between the surfaces of AgNPs and AO was found, and the effect of fluorescence quenching was observed. The fluorescence spectra of AO recovered after further addition of 6-TG are responsible for the aggregation of AgNPs. Under ideal conditions, the linear relationship of 6-TG in the concentration range of 0.005 to 0.04 μM was displayed, and the limit of detection of 6-TG was obtained as 5.3 nM. Under ideal conditions, the linear relationship of 6-TG was displayed in the concentration range of 0.005 to 0.04 μM, and the limit of detection of 6-TG was obtained as 5.3 nM. The proposed method offers a rapid analysis to determine 6-TG in human serum, blood, and urine samples.
About the Authors
V. K. VermaIndia
Department of Chemistry
492010, Raipur
K. Tapadia
India
Department of Chemistry
492010, Raipur
T. Maharana
India
Department of Chemistry
492010, Raipur
A. Sharma
India
Department of Chemistry
492010, Raipur
References
1. T. P. Huynh, A. Wojnarowicz, M. Sosnowska, S. Srebnik, T. Benincori, F. Sannicolo, F. D’Souza, W. Kutner, Biosens. Bioelectron, 70, 153–160 (2015).
2. A. A. Ensafi, H. Karimi-Maleh, J. Electroanal. Chem., 640, 75–83 (2010).
3. Munshi, N. Pashna, M. Lubin, J. R. Bertino, Oncologist, 19, 760–765 (2014).
4. H. Beitollahi, S. G. Ivari, M. T. Mahani, Mater. Sci. Eng. C, 69, 128–133 (2016).
5. Q. Gueranger, F. Li, M. Peacock, A. Larnicol-Fery, R. Brem, P. Macpherson, J. M. Egly, P. Karran, J. Invest. Dermatol., 134, 1408–1417 (2014).
6. M. T. Osterman, R. Kundu, G. R. Lichtenstein, J. D. Lewis, Gastroenterology, 130, 1047–1053 (2006).
7. R. Zakrzewski, J. Anal. Chem., 64, 1235–1241 (2009).
8. B. B. Prasad, R. Singh, A. Kumar, Carbon, 102, 86–96 (2016).
9. U. Hindorf, M. Lindqvist, C. Peterson, P. Soderkvist, M. Strom, H. Hjortswang, Inflamm. Bowel Dis., 55, 1423–1431 (2006).
10. G. Cangemi, A. Barabino, S. Barco, A. Parodi, S. Arrigo, G. Melioli, Int. J. Immunopathol. Pharmacol., 25, 435–444 (2012).
11. H. Li, X. Chong, Y. Chen, L. Yang, L. Luo, B. Zhao, Y. Tian, Colloids Surf. A, 493, 52–58 (2016).
12. Jacobsen, J. H. Schmiegelow, K. Nersting, J. Chromatogr. B, 881-882, 115–118 (2012).
13. S. A. Coultharda, P. Berry, S. McGarrity, A. Ansari, Christopher P. F. Redfern, J. Chromatogr. B, 1028, 175–180 (2016).
14. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, Hanqi Zhang, Spectrochim. Acta A, 107, 4–30 (2013).
15. X. Y. Deng, Y. Tang, L. H. Wu, L. J. Liu, X. Wang, Y. H. Chen, H. Q. Zhang, Y. Tian, Chin. J. Anal. Chem., 37, 79 (2009).
16. P. D. Tzanavaras, D. G. Themelis, A. Economou, Anal. Chim. Acta, 505, 167–171 (2004).
17. W. Wang, S. F. Wang, F. Xie, Sens. Actuat. B, 120, 238–244 (2016).
18. M. Amjadi, L. Farzampour, J. Lumin., 29, 689 (2014).
19. E. Mozioglu, M. Akgoz, T. Kocagoz, C. Tamerler, Anal. Methods, 8, 4017–4021 (2016).
20. Shi, Jingyu, F. Tian, J. Lyu, M. Yang, J. Mater. Chem. B, 35, 6989–7005 (2015).
21. J. N. Miller, Analyst, 130, 265–270 (2005).
22. P. Blaszkiewicz, M. Kotkowiak, A. Dudkowiak, J. Lumin., 183, 303–310 (2017).
23. Y. Chen, L. Chen, Y. Ou, L. Guo, F. Fu, Sens. Actuat. B: Chem., 233, 691–696 (2016).
24. Y. L. Xu, X. Y. Niu, H. J. Zhang, L. F. Xu, S. G. Zhao, H. L. Chen, X. G. Chen, J. Agric. Food Chem., 63, 1747–1755 (2015).
25. F. Gao, Q. Ye, P. Cui, X. Chen, M. Li, L. Wang. Anal. Methods, 3, 1180–1185 (2011).
26. K. H. Lee, S. J. Chen, J. Y. Jeng, Y. C. Cheng, J. T. Shiea, H. T. Chang, Colloid Interface Sci., 307, 340 (2007).
27. P. Liu, Y. Zhou, M. Guo, S. Yang, Nanoscale, 10, 848–855 (2018).
28. N. Y. Chena, H. F. Lia, Z. F. Gaoa, F. Qub, N. B. Lia, H. Q. Luoa, Sens. Actuat. B: Chem., 193, 730–736 (2014).
29. W. Leesutthiphonchai, W. Dungchai, W. Siangproh, N. Ngamrojnavanich, O. Chailapakul, Talanta, 85, 870–876 (2011).
30. U. P. Raghavendra, J. Thipperudrappa, M. Basanagouda, R. M. Melavanki, J. Lumin., 172, 139–146 (2016).
31. L. Farzampour, M. Amjadi, J. Lumin., 155, 226–230 (2014).
32. S. Qadri, A. Ganoe, Y. Haik, J. Hazard. Mater., 169, 318–323 (2009).
33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer, New York (1999).
34. G. L. Wang, W. M. Dong, X. Y. Zhu, W. J. Zhang, C. Wang, H. J. Jiao, Analyst, 136, 5256–5260 (2011).
35. H. C. Dai, Y. Shi, Y. L. Wang, Y. J. Sun, J. T. Hu, P. J. Ni, Sens. Actuat. B: Chem., 202, 201–208 (2014).
36. A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Environ. Sci. Technol., 44, 1260–1266 (2010).
Review
For citations:
Verma V.K., Tapadia K., Maharana T., Sharma A. ULTRASENSITIVE FLUORESCENCE DETERMINATION OF 6-THIOGUANINE IN BIOLOGICAL SAMPLES BASED ON THE SILVER NANOPARTICLE-MEDIATED RELEASE OF ACRIDINE ORANGE PROBE. Zhurnal Prikladnoii Spektroskopii. 2020;87(2):345(1)-345(8).