Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

OPTICAL RADIATION CHARACTERISTICS OF LASER-INDUCED AIR PLASMA AND JAMMING CCD IMAGING DETECTOR

Abstract

We studied the characteristics of laser-induced air plasma optical radiation and jamming the imaging CCD detector. Optical emission spectra of the air plasma ranged from 400 to 700 nm are composed of individual spectral lines superposing on continuous radiation, while the continuum radiation is mainly due to bremsstrahlung and recombination radiation. The jamming threshold of the CCD imaging detector jammed by optical radiation of the laser-induced air plasma is 3.98 · 10 10 W/cm2. With increasing laser intensity, the plasma expansion volume and spectral intensity will increase, the image quality of the CCD detector will deteriorate, and the jamming area on the CCD detector will become larger. The experimental results indicate that the jamming effect of laser-induced plasma radiation on CCD detectors can overcome the shortcomings of a single-wavelength laser use, which is important for improving the optoelectronic jamming effect.

About the Authors

Y. Dai
School of Science, Changchun University of Science and Technology
China
Jilin


Ch. Song
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology
China
Jilin


J. Lei
Xi’an institute of Applied Optics
China
Shanxi


Y. Han
Xi’an institute of Applied Optics
China
Shanxi


Xun Gao
School of Science, Changchun University of Science and Technology
China
Jilin


References

1. W. S. Boyle, E. Smith Graeme, Bell Syst. Tech. J., 49, N 4, 587–593 (1970).

2. M. F. Tompsett, G. F. Amelio, G. E. Smith, Appl. Phys. Lett., 17, N 3, 111–115 (1970).

3. N. Machet, C. Kubert-Habart, V. Baudinaud, D. Fournier, Eur. Conf. Radiat. Its Effects on Components and Systems, IEEE, 417–423 (2002).

4. A. Yamashita, T. Dotani, M. W. Bautz, B. Geoffrey, H. Ezuka, C. Gendreau, T. Kotani, K. Mitsuda, Otani Chiko, A. Rasmussen, G. Ricker, H. Tsunemi, IEEE Trans. Nucl. Sci., 44, N 3, 847–853 (1996).

5. G. R. Hopkinson, A. Mohammadzadeh, IEEE Trans. Nucl. Sci., 50, N 6, 1960–1967 (2003).

6. Chenzhi Zhang, Ludovic Blarre, Rodger M. Walser, Michael F. Becker, Appl. Opt., 32, N 2, 5201–5210 (1993).

7. A. Durécu, P. Bourdon, Proc. SPIE, 67380, 6 (2007).

8. M. Li Flora, O. Nixon, Nathan Arokia, IEEE Trans. Electron. Devices, 51, N 1, 2229–2236 (2004).

9. Tang Wei, Wang Rui, Wang Tingfeng, Guo Jin, Optik, 173, 185–192 (2018).

10. Liu Yan Wu, Wang Yong Qiang, An Wen, Adv. Mater. Res., 422, 4 (2011).

11. Xu Yin, Sun Xiaoquan, Li Shao, Proc. SPIE, 7850, N 1, 78501W (1–8) (2010).

12. A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, Optics/Photonics in Security and Defence. Int. Soc. Optics and Photonics (2007).

13. Xu Jie, Zhao Shanghong, Hou Rui, Li Xiaoliang, Wu Jili, Li Yunxia, Meng Wen, Ni Yanhui, Ma Lihua, Opt. Laser Eng., 47, N 7, 800–806 (2009).

14. P. J. Catto, R. M. More, Phys. Fluids, 20, N 20, 704–705 (1977).


Review

For citations:


Dai Y., Song Ch., Lei J., Han Y., Gao X. OPTICAL RADIATION CHARACTERISTICS OF LASER-INDUCED AIR PLASMA AND JAMMING CCD IMAGING DETECTOR. Zhurnal Prikladnoii Spektroskopii. 2020;87(2):349(1)-349(9).

Views: 287


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)