Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

FLUORESCENT PROBE DERIVED FROM 1,8-NAPHTHALIMIDE SCHIFF BASE FOR COPPER(II) ION: SYNTHESIS, CHARACTERIZATION, AND APPLICATION

Abstract

A novel fluorescent probe, 2-allyl-6-((2-((2-hydroxy-5-nitrobenzylidene)amino)ethyl)amino)-1Hbenzo[de]isoquinoline-1,3(2H)-dione (ABID), based on naphthalimide-Schiff base, has been designed and synthesized for the monitoring of Cu2+ ions. In solution (DMSO/ HEPES, 1:1, v/v, pH 7.4), ABID displayed fluorescence quenching towards Cu2+ ions over other important metal ions. A good linearity with a correlation coefficient (R2) of 0.99 validated that probe ABID could be used to detect Cu2+ ions in 0.5–5.0 μM concentrations. The limit of detection of ABID for Cu2+ could reach at 3.4×10–7 M level, and the quenching constant (KSV) of ABID towards Cu2+ was calculated to be 3.4×104 M1. The 2:1 stoichiometry and the binding mode between ABID and Cu2+ were studied by a Job plot and UV-Vis and fluorescence titration. Additionally, ABID was successfully employed to monitor Cu2+ in the Yellow River and tap water samples.

About the Authors

Y. Qu
School of Chemical and Biological Engineering, Lanzhou Jiaotong University
China
Lanzhou, Gansu, 730070


C. Wang
School of Chemical and Biological Engineering, Lanzhou Jiaotong University
China
Lanzhou, Gansu, 730070


Y.-C. Wu
School of Chemical and Biological Engineering, Lanzhou Jiaotong University
China
Lanzhou, Gansu, 730070


K. Zhao
School of Chemical and Biological Engineering, Lanzhou Jiaotong University
China
Lanzhou, Gansu, 730070


H.-L. Wu
School of Chemical and Biological Engineering, Lanzhou Jiaotong University
China
Lanzhou, Gansu, 730070


References

1. V. B. Bojinov, N. I. Georgiev, P. S. Nikolov, J. Photochem. Photobiol. A, 193, 129–138 (2008).

2. Y. M. Yang, Q. Zhao, W. Feng, F. Y. Li, Chem. Rev., 113, 192–270 (2013).

3. E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Chem. Rev., 106, 1995–2044 (2006).

4. G. L. Millhauser, Acc. Chem. Res., 37, 79–85 (2004).

5. C. Beyer, U. Böhme, C. Pietzsch, G. Roewer, J. Organomet. Chem., 654, 187–201 (2002).

6. E. L. Que, D. W. Domaille, C. J. Chang, Chem. Rev., 108, 1517–1549 (2008).

7. R. Zhang, X. J. Yu, Y. J. Yin, Z. Q. Ye, G. L. Wang, J. L. Yuan, Anal. Chim. Acta, 691, 83–88 (2011).

8. B. Chen, P. Zhong, Anal. Bioanal. Chem., 381, 986–992 (2005).

9. Y. L. Xu, S. S. Mao, H. P. Peng, F. Wang, H. Zhang, S. O. Aderinto, H. L. Wu, J. Lumin., 192, 56–63 (2017).

10. Y. L. Xu, S. O. Aderinto, H. L. Wu, H. P. Peng, H. Zhang, J. W. Zhang, X. Y. Fan, Z. Naturforsch. B, 72, 35–41 (2017).

11. S. O. Aderinto, Y. L. Xu, H. P. Peng, F. Wang, H. L. Wu, X. Y. Fan, J. Fluoresc., 27, 79–87 (2017).

12. J. H. Hu, J. B. Li, J. Qi, Y. Sun, Sensor. Actuat. B: Chem., 208, 581–587 (2015).

13. W. K. Dong, X. L. Li, L. Wang, Y. Zhang, Y. J. Ding, Sensor. Actuat. B: Chem., 229, 370–378 (2016).

14. W. K. Dong, S. F. Akogun, Y. Zhang, Y. X. Sun, X. Y. Dong, Sensor. Actuat. B: Chem., 238, 723–734 (2017).

15. H. L. Wu, S. O. Aderinto, Y. L. Xu, H. Zhang, X. Y. Fan, J. Appl. Spectrosc., 84, 25–30 (2017).

16. G. Z. Huang, C. Li, X. T. Han, S. O. Aderinto, K. S. Shen, S. S. Mao, H. L. Wu, Luminescence, 33, 660–669 (2018).

17. H. P. Peng, K. S. Shen, S. S. Mao, X. K. Shi, Y. L. Xu, S. O. Aderinto, H. L. Wu, J. Fluoresc., 27, 1191–1200 (2017).

18. F. Wang, Y. L. Xu, S. O. Aderinto, H. P. Peng, H. Zhang, H. L. Wu, J. Photochem. Photobiol. A, 332, 273–282 (2017).

19. K. S. Shen, S. S. Mao, X. K. Shi, F. Wang, Y. L. Xu, S. O. Aderinto, H. L. Wu, Luminescence, 33, 54–63 (2018).

20. C. Li, X. T. Han, S. S. Mao, S. O. Aderinto, X. K. Shi, K. S. Shen, H. L. Wu, Color. Technol., 134, 230–239 (2018).

21. N. Singh, N. Kaur, B. McCaughan, J. F. Callan, Tetrahedron Lett., 51, 3385–3387 (2010).

22. H. L. Wu, C. Y. Chen, H. Zhang, H. P. Peng, F. Wang, Z. H. Yang, J. W. Zhang, Chem. Pap., 70, 685–694 (2016).

23. S. O. Aderinto, H. Zhang, H. L. Wu, C. Y. Chen, J. W. Zhang, H. P. Peng, Z. H. Yang, F. Wang, Color. Technol., 133, 40–49 (2017).

24. H. L. Wu, H. P. Peng, F. Wang, H. Zhang, C. G. Chen, J. W. Zhang, Z. H. Yang, J. Appl. Spectrosc., 83, 931–937 (2017).

25. X. Q. Song, Y. Q. Peng, G. Q. Cheng, X. R. Wang, P. P. Liu, W. Y. Xu, Inorg. Chim. Acta, 427, 13–21 (2015).

26. J. Zhang, Y. Zhang, S. T. Zhang, X. Y. Dong, W. K. Dong, Asian J. Chem., 27, 654–656 (2015).

27. W. K. Dong, Y. X. Sun, C. Y. Zhao, X. Y. Dong, L. Xu, Polyhedron, 29, 2087–2097 (2010).

28. Y. J. Dong, X. Y. Dong, W. K. Dong, Y. Zhang, L. S. Zhang, Polyhedron, 123, 305–315 (2017).

29. W. K. Dong, J. C. Ma, Y. J. Dong, L. Zhao, L. C. Zhu, Y. X. Sun, Y. Zhang, J. Coord. Chem., 69, 3231–3241 (2016).

30. J. C. Ma, X. Y. Dong, W. K. Dong, Y. Zhang, L. C. Zhu, J. T. Zhang. J. Coord. Chem., 69, 149–159 (2016).

31. W. K. Dong, P. F. Lan, W. M. Zhou, Y. Zhang, J. Coord. Chem., 69, 1272–1283 (2016).

32. W. K. Dong, L. C. Zhu, J. C. Ma, Y. X. Sun, Y. Zhang, Inorg. Chim. Acta, 53, 402–408 (2016).

33. Y. Gao, Y. Li, X. Yang, F. He, J. Huang, M. Jiang, Z. Zhou, H. Chen, RSC Adv., 5, 80110–80117 (2015).

34. Y. Q. Xu, B. H. Li, W. W. Li, J. Zhao, S. G. Sun, Y. Pang, Chem. Commun., 49, 4764–4766 (2013).

35. L. Q. Chai, K. H. Mao, J. Y. Zhang, K. Y. Zhang, H. S. Zhang, Inorg. Chim. Acta, 457, 34–40 (2017).

36. N. I. Georgiev, V. B. Bojinov, N. Marinova, Sens. Actuat. B: Chem., 150, 655–666 (2010).

37. X. Q. Song, P. P. Liu, Y. A. Liu, J. J. Zhou, X. L. Wang, Dalton Trans., 45, 8154–8163 (2016).

38. M. H. Lim, B. A. Wong, W. H. Pitcock, Jr., D. Mokshagundam, M. H. Baik, S. J. Lippard, J. Am. Chem. Soc., 128, 14364–14373 (2006).

39. N. I. Georgiev, V. B. Bojinov, J. Lumin., 132, 2235–2241 (2012).

40. S. Roy, P. Gayen, R. Saha, T. K. Mondal, C. Sinha, Inorg. Chim. Acta, 410, 202–213 (2014).

41. N. I. Georgiev, A. M. Asiri, A. H. Qusti, K. A. Alamryb, V. B. Bojinov, Sens. Actuat. B: Chem., 190, 185–198 (2014).

42. K. A. Alamry, N. I. Georgiev, S. A. EI-Daly, L. A. Taib, V. B. Bojinov, J. Lumin., 158, 50–59 (2015).

43. Y. F. Liu, M. Deng, X. S. Tang, T. Zhu, Z. G. Zang, X.F. Zeng, S. Han, Sens. Actuat. B: Chem., 233, 25–30 (2016).

44. W. Shen, L. Q. Yan, W. W. Tian, X. Cui, Z. J. Qi, Y. M. Sun, J. Lumines., 177, 299–305 (2016).

45. J. G. Huang, M. Tang, M. Liu, M. Zhou, Z. Liu, Y. Cao, M. Y. Zhu, S. G. Liu, W. B. Zeng, Dyes Pigments, 107, 1–8 (2014).

46. L. Zhao, G. Wang, J. Chen, L. Zhang, B. Liu, J. Zhang, Q. Zhao, Y. Zhou, J. Fluorine Chem., 158, 53–59 (2014).

47. K. Yin, Y. X. Wu, S. S. Wang, L. X. Chen, Sens. Actuat. B: Chem., 232, 257–263 (2016).

48. J. Zhang, C. W. Yu, S. Y. Qian, G. Lu, J. L. Chen, Dyes Pigments, 92, 1370–1375 (2012).

49. F. P. Hou, J. Cheng, P. X. Xi, F. J. Cheng, L. Huang, G. Q. Xie, Y. J. Xie, Y. J. Shi, H. Y. Liu, D. C. Bai, Z. Z. Zeng, Dalton Trans., 41, 5799–5804 (2012).

50. T. Koike, T. Watanabe, S. Aoki, E. Kimura, M. Shiro, J. Am. Chem. Soc., 118, 12696–12703 (1996).

51. K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc., 133, 18003–18005 (2011).

52. M. Maity, M. C. Majee, S. Kundu, S. K. Samanta, E. C. Sañudo, S. Ghosh, M. Chaudhury, Inorg. Chem., 54, 9715−9726 (2015).

53. Z. Wang, Y. H. Xing, C. G. Wang, X. Q. Zeng, M. F. Ge, S. Y. Niu, Transit. Met. Chem., 34, 655–661 (2009).

54. Y. Q. Sun, M. Liang, W. Dong, G. M. Yang, Dai, Z. Liao, Z. H. Jiang, S. P. Yan, P. Cheng, Eur. J. Inorg. Chem., 7, 1514–1521 (2004).

55. H. Li, H. Guan, X. Duan, J. Hu, G. Wang, Q. Wang, Org. Biomol. Chem., 11, 1805–1809 (2013).


Review

For citations:


Qu Y., Wang C., Wu Y., Zhao K., Wu H. FLUORESCENT PROBE DERIVED FROM 1,8-NAPHTHALIMIDE SCHIFF BASE FOR COPPER(II) ION: SYNTHESIS, CHARACTERIZATION, AND APPLICATION. Zhurnal Prikladnoii Spektroskopii. 2020;87(3):387-394.

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)