Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

INVESTIGATION OF THE OPTICAL SPECTRA AND SPIN-HAMILTONIAN PARAMETERS FOR VANADYL IN ZINC PHOSPHATE GLASS

Abstract

The optical absorption spectra and spin-Hamiltonian parameters (g factors g||, g^ , and hyperfine structure constants A||, A^) of vanadyl in zinc phosphate glass are investigated, using the high-order perturbation formulas for a 3d1 ion in tetragonally compressed octahedra. In the calculations, the required crystal-field parameters are estimated from the superposition model, and the optical absorption bands and spinHamiltonian parameters are linked with the tetragonal distortion (characterized by ΔR = R^ – R||, where R^ and R|| denote the bond lengths perpendicular and parallel to the C4 axis). Based on the calculations, the tetragonal distortion ΔR (»1.795 Å) was obtained, and negative signs of the hyperfine structure constants A|| and A^ are suggested.

About the Authors

C.-D. Feng
Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University
China
Nanchang 330063


H.-X. Huang
Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University
China
Nanchang 330063


W.-B. Xiao
Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University
China
Nanchang 330063


H.-M. Zhang
Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University
China
Nanchang 330063


References

1. K. Srinivasulu, I. Omkaram, H. Obeid, A. S. Kumar, J. L. Rao, Physica B, 407, 4741–4748 (2012).

2. R. V. S. S. N. Ravikumar, R. Komatsu, K. Ikeda, A. V. Chandrasekhar, B. J. Reddyc, Y. P. Reddy, P. S. Rao, Solid State Commun., 126, 251–253 (2003).

3. N. G. Boetti, J. Lousteau, E. Ceci-Ginistrelli, E. Bertone, F. Geobaldo, D. Milanese, J. Alloys Compd., 657, 678–683 (2016).

4. K. Srinivasulu, I. Omkaram, H. Obeid, A. S. Kumar, J. L. Rao, J. Phys. Chem. A, 116, 3547–3555 (2012).

5. S. C. Colak, E. Aral, J. Alloys Compd., 509, 4935–4939 (2011).

6. R. Lakshmikantha, N. H. Ayachit, R. V. Anavekar, J. Phys. Chem. Solids, 75, 168–173 (2014).

7. B. Natarajan, S. Deepa, S. Mithira, R. V. S. S. N. Ravikumar, P. S. Rao, Phys. Scr., 76, 253–258 (2007).

8. C. C Ding, S. Y. Wu, L. Peng, L. N. Wu, Z. H. Zhang, Q. S. Zhu, M. H. Wu, B. H. Teng, J. Non-Cryst. Solids, 481, 103–109 (2018).

9. R. Kripal, M. Maurya, Physica B, 404, 1532–1537 (2009).

10. M. Farouk, A. Samir, M. El Okr, Physica B, 530, 43–48 (2018).

11. S. Mukherjee, A. K. Pal, J. Phys.: Condens. Matter, 20, 255202 (2008).

12. B. Karabulut, A. Tufan, Spectrochim. Acta A, 65, 742–748 (2006).

13. B. Srinivas, A. Hameed, G. Ramadevudu, M. N. Chary, Md. Shareefuddin, J. Phys. Chem. Solids, 129, 22–30 (2019).

14. O. Cozar, D. A. Magdas, I. Ardelean, J. Optoelectron, Adv. Mater., 9, 1730–1735 (2007).

15. P. S. Rao, P. M. V. Teja, A. R. Babu, Ch. Rajyasree, D. K. Rao, J. Non-Cryst. Solids, 358, 3372–3381 (2012).

16. B. Srinivas, A. Hameed, R. V. Kumar, M. C. Narasimha, Md. Shareefuddin, Philos. Mag., 98, 1625–1640 (2018).

17. V. Sreenivasulu, G. Upender, V. C. Mouli, M. Prasad, Spectrochim. Acta A, 148, 215–222 (2015).

18. R. V. S. S. N. Ravikumar, B. C. Jamalaiah, A. V. Chandrasekhar, B. J. Reddy, Y. P. Reddy, P. S. Rao, J. Alloys Compd., 287, 84–86 (1999).

19. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London (1970).

20. C. C. Ding, S. Y. Wu, L. N. Wu, L. J. Zhang, L. Peng, M. H. Wu, B. H. Teng, J. Phys. Chem. Solids, 113, 102–107 (2018).

21. D. J. Newman, B. Ng. Rep. Prog. Phys., 52, 699–763 (1989).

22. M. Q. Kuang, S. Y. Wu, G. L. Li, X. F. Hu, Mol. Phys., 113, 698–702 (2015).

23. H. M. Zhang, S. Y. Wu, M. Q. Kuang, Z. H. Zhang, J. Phys. Chem. Solids, 73, 846–850 (2012).

24. M. N. Li, Z. H. Zhang, S. Y. Wu, Z. Naturforsch. A, 72, 1139–1143 (2017).

25. R. M. Krishna, J. J. Andre, V. P. Seth, S. Khasa, S. K. Gupta, Mater. Res. Bull., 34, 1089–1097 (1999).

26. C. Y. Li, X. M. Zheng, Acta Phys. Pol. A, 125, 73–76 (2014).

27. S. Y. Wu, X. Y. Gao, H. N. Dong, J. Magn. Magn. Mater., 301, 67–73 (2006).

28. B. R. McGarvey, J. Phys. Chem., 71, 51–66 (1967).

29. E. Clementi, D. L. Raimondi, W. P. Reinhardt, J. Chem. Phys., 47, 1300–1307 (1967).

30. E. Clementi, D. L. Raimondi, J. Chem. Phys., 38, 2686–2689 (1963).

31. J. S. Griffith, The Theory of Transition-metal Ions, Cambridge University Press, London (1964).

32. E. K. Hodgson, I. Fridovich, Biophys. Biochem. Res. Commun., 54, 270–274 (1973).

33. H. M. Zhang, W. B. Xiao, X. Wan, Physica B, 449, 225–228 (2014).

34. W. L. Feng, Philos. Mag., 89, 1391–1394 (2009).

35. R. Muncaster, S. Parke, J. Non-Cryst. Solids, 24, 399–412 (1977).

36. E. Kalfaoğlu, B. Karabulut, J. Magn. Magn. Mater., 324, 1593–1595 (2012).


Review

For citations:


Feng C., Huang H., Xiao W., Zhang H. INVESTIGATION OF THE OPTICAL SPECTRA AND SPIN-HAMILTONIAN PARAMETERS FOR VANADYL IN ZINC PHOSPHATE GLASS. Zhurnal Prikladnoii Spektroskopii. 2020;87(3):413-417.

Views: 320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)