Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

PHASE COMPOSITION, MICROSTRUCTURE, AND OPTICAL PROPERTIES OF Cu2SnS3 THIN FILMS

Abstract

The Cu2SnS3 (CTS) thin films were produced by deposition of Sn/Cu layers by RF sputtering followed by annealing in an Ar/S atmosphere with S and Sn sources. According to XRD analyses and Raman spectroscopy, it was shown that single-phase CTS films of a monoclinic structure with traces of the CuxS phase were formed at a temperature of 520 °C. The scanning electron spectroscopy revealed a compact and homogeneous microstructure of the polycrystalline CTS layers. Photoluminescence spectra of the СTS films of monoclinic modification show one wide peak in the energy range of 0.7—1.0 eV, due to optical transitions of electrons from the conduction band to deep energy levels of acceptor-type defects.

About the Authors

E. P. Zaretskaya
State Scientific and Production Association, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


V. F. Gremenok
State Scientific and Production Association, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


V. A. Ivanoy
State Scientific and Production Association, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


A. V. Stanchik
State Scientific and Production Association, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


O. M. Borodavchenko
State Scientific and Production Association, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


D. V. Zhyhulin
JSC “INTEGRAL” – “INTEGRAL” Holding Managing Company
Belarus
Minsk, 220108


S. Özçelik
Gazi University, Photonics Application & Research Center
Turkey
Ankara, 06500


N. Akcay
Gazi University, Photonics Application & Research Center
Turkey
Ankara, 06500


References

1. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla. Phys. Status Solidi – Rapid Res. Lett., 10 (2016) 583—586

2. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi. Adv. Energy Mater., 4 (2014) 1301465(1—5)

3. M. Onoda, X. Chen, A. Sato, H. Wada. Mater. Res. Bull., 35 (2000) 1563—1570

4. D. Avellaneda, M. T. S. Nair, P. K. Nair. J. Electrochem. Soc., 157 (2010) D346—D352

5. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri. Phys. Status Solidi, 10 (2013) 1086—1091

6. P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha. J. Phys. D: Appl. Phys., 43 (2010) 215403

7. A. Kuku, O. A. Fakolujo. Sol. Energy Mater., 16 (1987) 199—204

8. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki. Jpn. J. Appl. Phys., 54 (2015) 08KC06(1—4)

9. M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki. Appl. Phys. Express, 8 (2015) 042303(1—4)

10. A. C. Lokhande, R. B. V Chalapathy, M. He, E. Jo, M. Gang, S. A. Pawar, C. D. Lokhande, J. H. Kim. Sol. Energy Mater. Sol. Cells, 153 (2016) 84—107

11. R. Chierchia, F. Pigna, M. Valentini, C. Malerba, E. Salza, P. Mangiapane, T. Polichetti, A. Mittiga. Phys. Status Solidi Curr. Top. Solid State Phys., 13 (2016) 35—39

12. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, V. G. Sathe. Appl. Phys. Mater. Sci. Process., 117 (2014) 1139—1146

13. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat. Sol. Energy Mater. Sol. Cells, 113 (2013) 165—170

14. J. Li, J. Huang, Y. Zhang, Y. Wang, C. Xue, G. Jiang, W. Liu, C. Zhu. RSC Adv., 6 (2016) 58786—58795

15. H. Dahman, L. El Mir, J. Mater. Sci. Mater. Electron., 26 (2015) 6032—6039

16. J. Han, Y. Zhou, Y. Tian, Z. Huang, X. Wang, J. Zhong, Z. Xia, B. Yang, H. Song, J. Tang. Front. Optoelectron., 7 (2014) 37—45

17. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D. B. Mitzi. Adv. Energy Mater., 3 (2013) 34—38

18. M. Ferrari, L. Lutterotti. J. Appl. Phys., 76, N 11 (1994) 7246—7255

19. H.-R. Wenk, S. Matthies, L. Lutterotti. Mater. Sci. Forum, 157–162 (1194) 473—480

20. L. Lutterotti, S. Matthies, H.-R. Wenk, A. J. Schultz, J. Richardson. J. Appl. Phys., 81, N 2 (1997) 594—600

21. Pawel Zawadzki, Lauryn L. Baranowski, Haowei Peng, Eric S. Toberer, David S. Ginley, William Tumas, Andriy Zakutayev, Stephan Lany. Appl. Phys. Lett., 103, N 25 (2013) 253902

22. G. Marcano, C. Rincón, Rincon, S. A. Lopez, G. Sanchez Perez, J. L. Herrera- Perez, J. G. Mendoza-Alvarez, P. Rodriguez. Solid State Commun., 151, N 1 (2011) 84—86

23. G. E. Delgado, A. J. Mora, G. Marcano, C. Rincón. Mater. Res. Bull., 38 (2003) 1949—1953

24. T. J. Wieting T. J. J. LVerble. Phys. Rev. B, 3 (1971) 4286—4292

25. J. de Wild, E. Kalesaki, L. Wirtz, P. J. Dale. Phys. Status Solidi RRL, 11 (2017) 1600410

26. Crovetto, R. Chen, R. B. Ettlinger, A. C. Cazzaniga, J. Schou, C. Persson, O. Hansen. Sol. Energy Mater. Sol. Cells, 154 (2016) 121—129

27. N. Aihara, Y. Matsumoto, K. Tanaka. Appl. Phys. Lett., 108 (2016) 092107

28. T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolz Ettinger, O. Hansen, J. Schou. Appl. Phys. Lett., 110 (2017) 261105


Review

For citations:


Zaretskaya E.P., Gremenok V.F., Ivanoy V.A., Stanchik A.V., Borodavchenko O.M., Zhyhulin D.V., Özçelik S., Akcay N. PHASE COMPOSITION, MICROSTRUCTURE, AND OPTICAL PROPERTIES OF Cu2SnS3 THIN FILMS. Zhurnal Prikladnoii Spektroskopii. 2020;87(3):462-468. (In Russ.)

Views: 391


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)