Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

SPECTROSCOPIC ANALYSIS OF PRODUCTS FROM LOW-RANK COAL MICROWAVE PYROLYSIS: EFFECT OF REACTION ATMOSPHERE

Abstract

The pyrolysis of low-rank coal is considered as the optimal method of realizing clean and efficient production of blue coke, tar, and gas. The experiments of low-rank coal microwave pyrolysis under CO2, CH4, H2, and circulating gas (CG) are studied in a custom-designed microwave oven to clearly clarify the effects of reaction atmospheres on pyrolysis temperature, products yields, and spectroscopic characteristics of pyrolysis products by the analysis techniques of FT-IR and GC-MS. The results show that among four pyrolysis atmospheres, the temperature-rise rate and final pyrolysis temperature under H2 atmosphere are both highest, taking only 5.6 min to arrive at 750°C, and the final temperature is greater than 950°C. The liquid yields under CO2, CH4, H2, and CG atmospheres are 21.8, 24.4, 28.2, and 26.8 wt.%, respectively. The contents of -OH, aromatic ring C=C double bond, and -C=O in the solid product under CH4 atmosphere are highest, possibly because of the thermal polycondensation and the secondary degassing of the solid product. The hydrogenation of H free radicals dissociated from “rich hydrogen” gas results in an improvement in the alkane content and a decrease in the aromatic hydrocarbon content in tar, which is confirmed by the change in oxygen content in the solid product. The hydrogenation technique of circulating coal gas on low-rank coal microwave pyrolysis is economical, energy-efficient, and feasible, which is helpful in the development of coal processing technologies.

About the Authors

J. Zhou
School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology; Research Centre of Metallurgical Engineering & Technology of Shaanxi Province
China

Xi’an 710055, Shaanxi



L. Wu
School of Metallurgical Engineering, Xi’an University of Architecture and Technology
China
Xi’an 710055, Shaanxi


K. Liang
School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology
China
Xi’an 710055, Shaanxi


J. Zhou
School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology
China
Xi’an 710055, Shaanxi


Q. Zhang
School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology; Research Centre of Metallurgical Engineering & Technology of Shaanxi Province
China
Xi’an 710055, Shaanxi


Y. Song
School of Metallurgical Engineering, Xi’an University of Architecture and Technology; Research Centre of Metallurgical Engineering & Technology of Shaanxi Province
China
Xi’an 710055, Shaanxi


Y. Tian
School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology; Research Centre of Metallurgical Engineering & Technology of Shaanxi Province
China
Xi’an 710055, Shaanxi


X. Lan
Research Centre of Metallurgical Engineering & Technology of Shaanxi Province
China
Xi’an 710055, Shaanxi


References

1. C. Xue, Y. P. Mao, W. L. Wang, Z. Song, X. Q. Zhao, Sun J, Y. X. Wang, J. Environ. Sci. China, 81, 119–135 (2019).

2. N. S. Razvan, V. Adrian, M. Pranjali, B. Dorin, Biores. Technol., 277, 179–194 (2019).

3. G. J. Yang, S. J. Park, Materials, 12, 1177 (2019).

4. C. Kumar, M. A. Karim, Crit. Rev. Food Sci., 59, 379–394 (2019).

5. J. Zhou, L. Wu, K. Liang. Y. H. Song, Q. L. Zhang, Mater. Rep., 33, 191–197 (2019).

6. BP company. BP Statistical Review of World Energy (2018).

7. International Energy Agency. Outlook on world energy 2018, Beijing (2019).

8. S. Mutsengerere, C. H. Chihobo, D. Musademba, I. Nhapi, Renew. Sust. Energy Rev., 104, 328–336 (2019).

9. Y. N. Zhang, C. Paul, S. Y. Liu, P. Peng, M. Min, Y. L. Cheng, A. Erik, N. Zhou, L. L. Fan, C. H. Liu, G. Chen, Y. H. Liu, H. W. Lei, B. X. Li, R. Roger, Biores. Technol., 230, 143–151 (2018).

10. M. Faisal, M. Ramli, N. A. Farid, Renew. Sust. Energy Rev., 39, 555–574 (2014).

11. F. Motasemi, T. A. Muhammad, Renew. Sust. Energy Rev., 28, 317–330 (2013).

12. N. N. Peng, C. Huang, J. Su, J. Hazard. Mater., 365, 565–571 (2019).

13. Z. X. Tan, S. N. Yuan, Waste Biomass. Valori, 10, 1395–1405 (2019).

14. Y. H. Bai, Y. L. Wang, S. H. Zhu, F. Li, K. C. Xie, Energy, 74, 464–470 (2014).

15. M. V. Gil, J. Riaza, L. Álvarez, C. Pevida, J. J. Pis, F. Rubiera, Appl. Energy, 91, 67–74 (2012).

16. X. W. Xu, Z. L. Li, E. C. Jiang, Biores. Technol., 284, 178–187 (2019).

17. B. D. Colette, F. Andre, L. Ali, L. Philippe, Fuel, 75, 1274–1275 (1996).

18. A. Ariunaa, B. Q. Li, W. Li, B. Purevsuren, S. H. Munkhjargal, F. R. Liu, Z. Q. Bai, G. Wang, J. Fuel Chem. Technol., 35, 1–4 (2007).

19. P. F. Wang, L. J. Jin, J. H. Liu, S. W. Zhu, H. Q. Hu, Fuel, 103, 14–21 (2013).

20. L. J. Jin, H. B. Zhao, M. Y. Wang, B. Y. Wei, H. Q. Hu, Fuel, 241, 1129–1137 (2019).

21. H. Y. Zhang, R. Xiao, D. H. Wang, G. Y. He, S. S. Shao, J. B. Zhang, Z. P. Zhong, Biores. Technol., 103, 4258–4264 (2011).

22. J. Zhou, L. Wu, K. Liang, Q. L. Zhang, Y. H. Song, Y. H. Tian, X. Z. Lan, J. Anal. Appl. Pyrol., 134, 580–589 (2018).

23. J. Zhou, Z. Yang, X. F. Liu, L. Wu, Y. H. Tian, X. C. Zhao, Spectrosc. Spectr. Anal., 36, 459–465 (2016).

24. J. Zhou, X. Z. Lan, X. C. Zhao, Q. L. Zhang, Y. H. Song, L. Wu, X. Y. Chen, Chinese Patent, ZL 201220436061.9.

25. M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, J. Yuan, Carbon, 48, 788–796 (2010).

26. E. Reguera, A. C. Diaz, M. H. Yee, J. Mater. Sci., 40, 5331–5334 (2005).

27. A. Victor, S. Dushyant, S. Mark, H. Sonia, Fuel, 33, 905–915 (2019).

28. W. H. Calkins, C. Bonifaz, Fuel, 63, 1716–1719 (1986).

29. A. P. Wu, T. Y. Pan, X. M. Shi, L. F. Zhou, R. M. Liu, D. X. Zhang, J. S. Gao, Coal Conv., 35, 1–5 (2012).

30. M. Cheng, S. C. Wang, D. X. Zhang, Coal Conv., 35, 94–98 (2012).

31. P. R. Solomn, T. H. Flectcher, R. J. Pugmire, Fuel, 72, 587–597 (1993).

32. H. Q. Liao, W. Li, C. G. Sun, B. Q. Li, Chem. Ind. Eng. Pro, 15, 19–23 (1996).

33. National Standard of P. R. China. GB/T 25212-2010 (2010).

34. National Standard of P. R. China. GB/T 30732-2014 (2014).

35. National Standard of P. R. China. GB/T 31391-2015 (2015).

36. Y. H. Song, Q. N. Ma, W. J. He, Energ. Fuel, 31, 217–223 (2018).

37. Q. H. Tan, G. H. Wang, A. Long, A. Dines, C. Buda, J. Shabaker, D. E. Resasco, J. Catal., 347, 102–115 (2017).

38. P. Liu, J. W. Le, D. X. Zhang, S. C. Wang, T. Y. Pan, Fuel, 207, 244–252 (2017).


Review

For citations:


Zhou J., Wu L., Liang K., Zhou J., Zhang Q., Song Y., Tian Y., Lan X. SPECTROSCOPIC ANALYSIS OF PRODUCTS FROM LOW-RANK COAL MICROWAVE PYROLYSIS: EFFECT OF REACTION ATMOSPHERE. Zhurnal Prikladnoii Spektroskopii. 2020;87(4):679(1)-679(9).

Views: 294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)