Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

QUANTIFICATION OF ELEMENTS IN COW FUR BY LASER INDUCED BREAKDOWN SPECTROSCOPY

Abstract

The purpose of this work is to report an analytical procedure to prove the validity of the hypothesis of the representativeness of the mass vaporized in the plasma plume of the studied sample. To achieve that, we used the laser induced breakdown spectroscopy (LIBS) technique to analyze some minerals and trace elements in cow tail hair. First, hair samples were dissolved in nitric acid; then the solutions were analyzed by atomic absorption spectrometer. Ca, Mg, and Na mass concentrations were determined for the 25 hair samples. Finally, a small amount of hair from every strand was cut in very small pieces and mixed with potassium bromide to make 12 mm diameter pellets. The laser was focused on the pellet surfaces, and the intensities of the emission lines of the studied elements were related to their absolute mass concentrations already measured. Experimental conditions were chosen to guarantee the reproducibility of ablations and to minimize the fluctuations of the ablated mass. In addition, local thermodynamic equilibrium was verified to prove the possibility of use of the theoretical model to obtain the variation of the emission line intensity as a function of the species concentration in the plasma plume.

About the Authors

I. Cherni
Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar; Faculty of Sciences of Tunis, University of Tunis El Manar
Tunisia
Tunis


S. Hamzaoui
Faculty of Sciences of Tunis, University of Tunis El Manar
Tunisia
Tunis


N. Jaïdane
Faculty of Sciences of Tunis, University of Tunis El Manar
Tunisia
Tunis


References

1. T. H. Maugh, Science, 202, 4374, 1271–1273 (1978).

2. G. V. Iyengar, Element Analysis of Biological Samples: Principles and Practices, Vol. I, CRC Press, Boca Raton, Florida, 242 (1989).

3. D. Xiaonan, N. Yuzuru, H. Keizo, Anal. Sci., 3, 195 (1998).

4. A. Khuder, M.A. Bakir, R. Hasan, A. Mohammad, Environ. Monit. Assess,, 143, N 1-3, 67–74 (2008).

5. D. Combs, R. Goodrich, J. Meiske, J. Anim. Sci., 54, 391–398 (1982).

6. R. Kellaway, P. Sitorus, J. Leibholz, Res. Vet. Sci., 24, 352–357 (1978).

7. A. R. Grabeklis, A. V. Skalny, S. P. Nechiporenko, E. V. Lakarova, J. Trace Elem. Med. Biol., 25, N 1, 41–44 (2011).

8. N. A. Gres, T. M. Yuraga, A. G. Romanyuk, S. Hamad, V. P. Sokol, Lab. Diagn. East Eur., 4, N 4, 62–72 (2012).

9. M. S. Blandin, Biocontact Miner. Anal. Hair, 60, 226 (2012).

10. L. Kopito, R. K. Byers, I. N. Shwackman, EnRI J. Mcd., 276, 949 (1967).

11. A. Taylor, Ann. Clin. Biochem., 23, 364 (1986).

12. K. Asano, K. Suzuki, M. Chiba, K. Sera, R. Asano, T. Sakai, J. Vet. Med. Sci., 68, 769–771 (2006).

13. M. D. L. Priya, A. Geetha, Trace Elem. Res., 142, 148–158 (2011).

14. K. Chojnacka, A. Zielińska, I. Michalak, H. Górecki, Environ. Toxicol. Pharmacol., 30, 188–194 (2010).

15. I. Michalak, K. Chojnacka, A. Saeid, Chin. Sci. Bull., 57, 3460–3465 (2012).

16. S. Ni, R. Li, A. Wang, Sci. China Earth Sci., 54, 780–788 (2011).

17. A. Bobrowski, A. Królicka, J. Zarębski, Rev. Electroanal., 21, 1449–1458 (2009).

18. M. S. El-Shahawi, S. S. M. Hassan, A. M. Othman, M. A. El-Sonbati, Microchem. J., 89 13–19 (2008).

19. M. A. Gondal, M. A. Shemis, A. A. I. Khalil, M. M. Nasr, B. Gondal, J. Anal. Spectrom., 31, 506–514 (2016).

20. M. A. Gondal, T. Hussain, Z. H. Yamani, M. A. Baig, Talanta, 69, 1072–1078 (2006).

21. M. A. Gondal, M. M. Nasr, Z. Ahmed, Z. H. Yamani, J. Environ. Sci. Health, A: Tox. Hazard. Subst. Environ. Eng., 44, 528–535 (2009).

22. M. A. Gondal, Z. S. Seddigi, M. M. Nasr, B. Gondal, J. Hazard. Mater., 175, 726–732 (2010).

23. B. E. Naes, S. Umpierrez, S. Ryland, C. Barnett, J. R. Almirall, Spectrochim. Acta B, 63, 1145–1150 (2008).

24. D. A. Rusak, A. E. Zeleniak, J. L. Obuhosdky, S. M. Holdren, C. A. Noldy, Talanta, 117, 55–59 (2013).

25. A. O. Mehder, Y. B. Habibullah, M. A. Gondal, U. Baig, Talanta, 155, 124–132 (2016).

26. K. Müller, H. Stege, Archaeometry, 45, 421–433 (2003).

27. I. Choi, G. C. Y. Chan, X. Mao, D. L. Perry, R. E. Russo, Appl. Spectrosc., 67, 1275–1284 (2013).

28. A. M. Matiaske, I. B. Gornushkin, U. Panne, Anal. Bioanal. Chem., 402, 2597–2606 (2012).

29. E. C. Jung, D. H. Lee, J. I. Yun, J. G. Kim, J. W. Yeon, K. Song, Spectrochim. Acta B, 66, 761–764 (2011).

30. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc., 53, 960–964 (1999).

31. M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, Spectrochim. Acta B, 57, 701–709 (2002).

32. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Appl. Opt., 42, N 30, 6133–6137 (2003).

33. C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, C. Geertsen, J. Anal. Atom. Spectrom., 12, 183–188 (1997).

34. H. R. Griem, Plasma Spectroscopy, Mc Graw-Hill, New York (1964).

35. W. Lochte-Holtgreven, Plasma Diagnostics, North-Holland, 135 (1968).


Review

For citations:


Cherni I., Hamzaoui S., Jaïdane N. QUANTIFICATION OF ELEMENTS IN COW FUR BY LASER INDUCED BREAKDOWN SPECTROSCOPY. Zhurnal Prikladnoii Spektroskopii. 2020;87(4):681(1)-681(6).

Views: 331


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)