Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

GLUTATHIONE-CAPPED GOLD NANOPARTICLES-BASED PHOTOACOUSTIC SENSOR FOR LABEL-FREE DETECTION OF LEAD IONS

Abstract

The photoacoustic signal generated by laser-induced nanobubbles (PA-LINB) proved to be a sensitive tool to monitor the aggregation of gold nanoparticles. Here, a simple and label-free photoacoustic method for the rapid detection of Pb2+ in the aqueous phase was developed. Due to the high affinity of Pb2+ ions to glutathione, the presence of Pb2+ led to the aggregation of glutathione-conjugated gold nanoparticles (GSH-GNPs). Hence, by measuring the variation of the PA-LINB signal after the aggregation of GSH-GNPs, Pb2+ can be quantified. A low detection limit for Pb2+ (42 nM) and a wide linear working range (~42-1000 nM) were achieved. Furthermore, the proposed method showed good selectivity against other metal ions.

About the Authors

R. . Shi
College of Biosystems Engineering and Food Science, Zhejiang University
Russian Federation


X. -J. Liu
College of Biosystems Engineering and Food Science, Zhejiang University
Russian Federation


Y. . Ying
College of Biosystems Engineering and Food Science, Zhejiang University
Russian Federation


References

1. H. L. Needleman, D. Bellinger, Ann. Rev. Public Health, 12, 111-140 (1991).

2. H. Needleman, Annu. Rev. Med., 55, 209-222 (2004).

3. A. L. Burlingame, R. K. Boyd, S. J. Gaskell, Anal. Chem., 68, 599-652 (1996).

4. K. Kavallieratos, J. M. Rosenberg, W.-Z. Chen, T. Ren, J. Am. Chem. Soc., 127, 6514-6515 (2005).

5. A. K. Brown, J. Li, C. M. B. Pavot, Y. Lu, Biochemistry, 42, 7152-7161 (2003).

6. C.-W. Liu, C.-C. Huang, H.-T. Chang, Anal. Chem., 81, 2383-2387 (2009).

7. C. D. Geary, I. Zudans, A. V. Goponenko, S. A. Asher, S.G. Weber, Anal. Chem., 77, 185-192 (2004).

8. T.-J. Lin, M.-F. Chung, Sensors, 8, 582-593 (2008).

9. N. L. Rosi, C.A. Mirkin, Chem. Rev., 105, 1547-1562 (2005).

10. J. Liu, Y. Lu, J. Am. Chem. Soc., 126, 12298-12305 (2004).

11. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science, 277, 1078-1081 (1997).

12. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature, 382, 607-609 (1996).

13. S. Cobbe, S. Connolly, D. Ryan, L. Nagle, R. Eritja, D. Fitzmaurice, J. Phys. Chem. B, 107, 470-477 (2002).

14. S.-J. Park, A. A. Lazarides, C. A. Mirkin, R. L. Letsinger, Angew. Chem. Int. Ed., 40, 2909-2912 (2001).

15. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, J. L. West, Anal. Chem., 75, 2377-2381 (2003).

16. N. T. K. Thanh, Z. Rosenzweig, Anal. Chem., 74, 1624-1628 (2002).

17. T. B. Norsten, B. L. Frankamp, V. M. Rotello, Nano Lett., 2, 1345-1348 (2002).

18. S.-Y. Lin, S.-W. Liu, C.-M. Lin, C.-H. Chen, Anal. Chem., 74, 330-335 (2001).

19. S. O. Obare, R. E. Hollowell, C. J. Murphy, Langmuir, 18, 10407-10410 (2002).

20. J. Liu, Y. Lu, J. Am. Chem. Soc., 125, 6642-6643 (2003).

21. H. Jans, X. Liu, L. Austin, G. Maes, Q. Huo, Anal. Chem., 81, 9425-9432 (2009).

22. J.-M. Nam, S.I. Stoeva, C.A. Mirkin, J. Am. Chem. Soc., 126, 5932-5933 (2004).

23. Q. Dai, X. Liu, J. Coutts, L. Austin, Q. Huo, J. Am. Chem. Soc., 130, 8138-8139 (2008).

24. J. R. Kalluri, T. Arbneshi, S. Afrin Khan, A. Neely, P. Candice, B. Varisli, M. Washington, S. McAfee, B. Robinson, S. Banerjee, A. K. Singh, D. Senapati, Paresh C. Ray, Angew. Chem. Int. Ed., 48, 9668-9671 (2009).

25. X. Liu, M.G. Gonzalez, R. Niessner, C. Haisch, Anal. Methods, 4, 309-311 (2012).

26. M.G. Gonzalez, X. Liu, R. Niessner, C. Haisch, Appl. Phys. Lett., 96, 174104/1-174104/3 (2010).

27. C. Haisch, Meas. Sci. Technol., 23, 012001 (2012).

28. E. Galanzha, V. Zharov, Cancers, 5, 1691-1738 (2013).

29. Q. Wu, H. Cao, Q. Luan, J. Zhang, Z. Wang, J.H. Warner, A. A. R. Watt, Inorg. Chem., 47, 5882-5888 (2008).

30. Y. Wang, F. Yang, X. Yang, ACS Appl. Mat. Interfaces, 2, 339-342 (2010).

31. Y.-R. Kim, R.K. Mahajan, J. S. Kim, H. Kim, ACS Appl. Mater. Interfaces, 2, 292-295 (2009).

32. G. Zhong, J. Liu, X. Liu, Micromachines, 6, 462-472 (2015).

33. X. J. Liu, M. Knauer, N. P. Ivleva, R. Niessner, C. Haisch, Anal. Chem., 82, 441-446 (2010).

34. T. Schmid, Anal. Bioanal. Chem., 384, 1071-1086 (2006).

35. F. Chai, C. Wang, T. Wang, L. Li, Z. Su, ACS Appl. Mater. Interfaces, 2, 1466-1470 (2010).

36. http://www.epa.gov/safewater/contaminants/index.html (accessed February 2016).


Review

For citations:


Shi R., Liu X.-., Ying Y. GLUTATHIONE-CAPPED GOLD NANOPARTICLES-BASED PHOTOACOUSTIC SENSOR FOR LABEL-FREE DETECTION OF LEAD IONS. Zhurnal Prikladnoii Spektroskopii. 2017;84(3):379-384. (In Russ.)

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)