SPECTRAL MANIFESTATIONS OF SPECIFIC SOLVATION OF THE 5,10,15,20-TETRAKIS-(4-SULFONATOPHENYL)-PORPHYRIN AND ITS DOUBLY PROTONATED FORM IN WATER SOLUTIONS
Abstract
The temperature dependence of the electronic absorption and fluorescence spectra of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin in weakly acidic aqueous solutions was studied in the temperature range of 288–333 K. It was found that the fraction of molecules in the form of a free base in the ground (S0) and lower excited singlet (S1) states increases with the temperature increase, due to a decrease in the fraction of molecules in the doubly protonated form. Deprotonation is caused by a shift in the acid-base equilibrium in the macrocycle core due to a decrease in рKа(S0) and рKа(S1) with the temperature increase. At solution temperatures >293 K, the difference рKа(S1)–рKа(S0) < 0, and at Т < 293 K the value рKа(S1)–рKа(S0) >0. It was found that activation energy of deprotonation in the S0 and S1 states is Ea = 5.0 and 3.4 kJ/mol at T > 293 K; it increases to 20.3 and 56.2 kJ/mol at T < 293 K. These differences are explained by different specific solvation of the tetrapyrrole macrocycle in the ground S0 and lower excited S1 states due to a change in the proportion of two forms of water. At higher temperatures so-called form A with disordered hydrogen bonding dominates, and when temperature decreases the amounts of the form A and form B, possessing strongly ordered system of hydrogen bonding, are comparable. As a result the porphyrin free base stabilization prevails at high temperatures, whereas the doubly protonated form dominates at lower temperatures.
About the Authors
P. G. KlimovichBelarus
Minsk, 220006
A. B. Krylov
Belarus
Minsk, 220006
M. M. Kruk
Belarus
Minsk, 220006
References
1. Н. Н. Крук, А. C. Cтарухин. Журн. прикл. спектр., 74 (2007) 460—464 [N. N. Kruk, A. S. Starukhin. J. Appl. Spectr., 74 (2007) 508—513]
2. M. M. Kruk, A. S. Starukhin, R. Czerwieniec. J. Porph. Phthal., 12 (2008) 1201—1210
3. Н. Н. Крук, А. С. Старухин. Опт. и спектр., 111 (2011) 756—763
4. D. J. Quimby, F. R. Longo. J. Am. Chem. Soc., 97 (1975) 5111—5117
5. J. M. Lupton. Appl. Phys. Lett., 81 (2002) 2478—2480
6. F. J. Vergeldt, R. B. M. Koehorst, A. Van Hoek, T. Schaafsma. J. Phys. Chem., 99 (1995) 4397—4405
7. Н. Н. Крук. Журн. прикл. спектр., 73 (2006) 613—619 [N. N. Kruk. J. Appl. Spectr., 73 (2006) 686—693]
8. R. J. Abraham, G. E. Hawkes, K. M. Smith. Tetrahedron Lett., 15 (1974) 1483—1486
9. A. Sarai. J. Chem. Phys., 76 (1982) 5554—5562
10. E. I. Zenkevich, A. M. Shulga, I. V. Filatov, A. V. Chernook, G. P. Gurinovich. Chem. Phys. Lett., 120 (1985) 63—68
11. M. M. Kruk, T. H. Ngo, P. Verstappen, A. S. Starukhin, J. Hofkens, W. Dehaen, W. Maes. J. Phys. Chem. A, 116 (2012) 10695—10703
12. Ю. Х. Аджиб, Т. Б. Карлович, Л. Л. Гладков, В. Маес, Н. Н. Крук. Журн. прикл. спектр., 86 (2019) 345—351 [Y. H. Ajeeb, T. B. Karlovich, L. L. Gladkov, W. Maes, M. M. Kruk. J. Appl. Spectr., 86 (2019) 389—395]
13. F. V. A. Camargo, H. L. Anderson, S. R. Meech, I. A. Heisler. J. Phys. Chem. B, 119 (2015) 14660—14667
14. A. Višniakauskas, D. Din, M. Qourashi, I. Boczarov, M. Balaz, H. L. Anderson, M. K. Kuimova. Chem. Eur. J., 23 (2017) 11001—11010
15. K. Tsukahara, M. Tsunumori, Y. Yamamoto. Inorg. Chim. Acta, 118 (1986) L21—L22
16. Y. Mori, M. Sasaki, C. Daian, S. Yamada, K. Maeda. Bull. Chem. Soc. Jpn., 65 (1992) 3358—3361
17. Ю. Х. Аджиб, А. А. Минченя, П. Г. Климович, В. Маес, Н. Н. Крук. Журн. прикл. спектр., 86 (2019) 697—704 [Y. H. Ajeeb, А. А. Minchenya, P. G. Klimovich, W. Maes, M. M. Kruk. J. Appl. Spectr., 86 (2019) 788—794]
18. Th. Gensch, C. Viappiani, S. Braslavsky. J. Am. Chem. Soc., 121 (1999) 10573—10582
19. G. Akerlöf. J. Am. Chem. Soc., 54 (1932) 4125—4139
20. A. Cattenecio, Y. Dariuch, C. Magallanes. Chem. Phys. Lett., 367 (2003) 669—671
21. G. M. Williams, P. Hambright. Inorg. Chem., 19 (1980) 562—578
22. M. Presselt, W. Dehaen, W. Maes, A. Klamt, T. J. Martinez, W. J. D. Beenken, M. M. Kruk. Phys. Chem. Chem. Phys., 17 (2015) 14096—14106
23. I. V. Vershilovskaya, S. Stefani, P. Verstappen, T. H. Ngo, I. G. Scheblykin, W. Dehaen, W. Maes, M. M. Kruk. Macroheterocycles, 10 (2017) 257—267
24. И. Я. Берштейн, Ю. Л. Каминский. Спектрофотометрический анализ в органической химии, Москва, Химия (1986)
25. M. O. Senge, S. A. MacGovan, J. O’Brien. Chem. Commun. (Camb.), 51 (2015) 17031—17063
26. K. Райхардт. Растворители и эффекты среды в органической химии, пер. с англ., Москва, Мир (1991)
27. Физическая химия, в 2 кн., Электрохимия. Химическая кинетика и катализ, уч. для вузов, под ред. К. С. Краснова, Москва, Высш. школа (2001)
28. М. В. Волькенштейн. Биофизика, Москва, Наука (1988)
29. H. Hamaguchi. Bull. Chem. Soc. Jpn., 21 (2018) 991—997
30. D. M. Carey, G. M. Korenowski. J. Chem. Phys., 108 (1998) 2669—2676
Review
For citations:
Klimovich P.G., Krylov A.B., Kruk M.M. SPECTRAL MANIFESTATIONS OF SPECIFIC SOLVATION OF THE 5,10,15,20-TETRAKIS-(4-SULFONATOPHENYL)-PORPHYRIN AND ITS DOUBLY PROTONATED FORM IN WATER SOLUTIONS. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):25-33. (In Russ.)