PARAMETERS OF FUNDAMENTAL OPTICAL FUNCTIONS AND ELEMENTARY TRANSITION BANDS FOR COMPOUNDS Mg2X (X — Si, Ge, Sn)
Abstract
The spectra of sixteen optical functions of the group of compounds Mg2X (X – Si, Ge, Sn) in the range of 1—11 eV at 77 K have been determined and compared. Their main features and general regularities have been established and compared. The calculations are performed on the basis of the experimental reflection spectra R(E) using the Kramers–Kronig relations and analytical formulas connecting optical functions. The integral spectra of the imaginary part of the dielectric function e2(E) are decomposed into elementary transition bands in the 1.5–6.0 eV region using an improved nonparametric method of combined Argand diagrams, taking into account the effective number of valence electrons forming individual elementary bands. For Mg2X compounds (X – Si, Ge, Sn), instead of five to six maxima and shoulders in the integral spectra, an average of six times more elementary components of transitions caused by excitonic and interband transitions were revealed. The energies of the maxima and areas of the selected elementary components of the transition bands of three compounds are determined and compared. On the basis of the known theoretical calculations, the supposed nature and localization for the revealed elementary components of the transitions are proposed. A diagram is proposed for the dependence of the energies of the maxima of the selected transition bands on the lattice parameter of the three compounds.
About the Authors
V. Val. SobolevRussian Federation
Izhevsk, 426069
A. I. Kalugin
Russian Federation
Izhevsk, 426067
E. A. Antonov
Russian Federation
Izhevsk, 426067
References
1. Qian Chen, Kan Chen, Qing Chen, Qing-quan Xiao, Quan Xie. Key Eng. Mater., 727 (2017) 581—587
2. B. Ryu, S. Park, Eun-Ae Choi, J. de Boor, P. Ziolkowski, J. Chung, Su Dong Park. J. Appl. Phys., (2019) 1—23
3. G. Shi, E. Kioupakis, J. Appl. Phys., 123 (2018) 085114
4. J. J. Pulikkotil, D. J. Singh, S. Auluck, M. Saravanan, D. K. Misra, A. Dhar, R. C. Budhani. Phys. Rev. B, 86, N 15 (2012) 1555204(1—8)
5. K. Kaur, S. Dhiman, R. Kumar. Mater. Res. Express, 4 (2017) 075509
6. V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Yu. Samunin, M. V. Vedernikov. Phys. Rev. B, 86, N 74 (2006) 045207(1—5)
7. M. Y. Au-Yang, Marvin L. Cohen. Phys. Rev., 178, N 3 (1969) 1358
8. В. M. Rowe. Termoelektrics Hardbook, CRC Press, Boca Ration (2006)
9. N. Savvides, H. Y. Chem. J. Electron. Mater., 39 (2010) 2136
10. L. A. Lott, D. W. Lynch. Phys. Rev., 141, N 2 (1966) 681—687
11. С. Г. Кроитору, В. В. Соболев. Неорг. матер., 2, № 3 (1966) 50—54
12. D. McWilliams, D. W. Lynch. J. Opt. Soc. Am., 53, N 2 (1963) 298—299
13. В. В. Соболев, В. И. Донецких, Е. Б. Соколов, Л. А. Ройтер. ФТТ, 12, № 10 (1970) 2687—2691
14. W. J. Scouler. Phys. Rev., 178, N 3 (1969) 1353—1357
15. V. V. Sobolev. Phys. Status Solidi (b), 49 (1972) 209—214
16. W. Lui, X. Tan, K. Yin, H. Lui, X. Tang, J. Shi, Q. Zhang, C. Uher. Phys. Rev. Lett., 108, N 16 (2012) 166601 (1—5)
17. X. J. Tan, W. Lui, H. J. Lui, J. Shi, X. F. Tang, C. Uher. Phys. Rev. B, 85, N 20 (2012) 2051212(1—10)
18. K. Kutorasinski, B. Wiendlocha, J. Tobola, S. Kaprzyk. Phys. Rev. B, 89 (2014) 115205
19. J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, H. Scherrer. Func. Mater. Lett., 6, N 5 (2013) 1340005(1—14)
20. N. O. Folland. Phys. Rev., 158 (1967) 764—775
21. Peter M. Lee. Phys. Rev., 135, N 4A (1964) 1110—1114
22. F. Aymerich, G. Mula. Phys. Status Solidi, 42 (1970) 697—704
23. O. Benhalal, A. Chahed, S. Kaksari, B. Abbar, B. Bouhafs, H. Aourag. Phys. Status Solidi (b), 242, N 10 (2005) 2022—2032
24. B. Arnaud, M. Alouani. Phys. Rev. B, 64, N 3 (2001) 033202(1—4)
25. X. Tan, Y. Yin, H. Hu, Y. Xiao, Z. Guo, Q. Zhang, H. Wang, Guo-Qiang Liu, J. Jiang. Ann. Phys., Berlin (2020) 1900543
26. Chen Qian, Xie Quan, Zhao Feng Juan, Cui Dong Meng, Li Xu Zhen, В. Arnaud, M. Alouani. Chin. Sci. Bull., 55, N 21 (2010) 2236—2242
27. J. de Boor, A. Berche, P. Jund. J. Phys. Chem. C (2020) 1—26
28. A. Reifer, F. Fuchs, C. Rodl, A. Schleife, F. Bechstead, R. Goldhahn. Phys. Rev. B, 84, N 7 (2011) 075218(1—13)
29. В. В. Соболев. Оптические свойства и электронная структура неметаллов. I. Введение в теорию, Москва-Ижевск, Ин-т комп. исслед. (2012)
30. А. И. Калугин, Е. А. Антонов, Д. А. Перевощиков, В. Вал. Соболев. Хим. физика и мезоскопия, 21, N 4 (2019) 604—610
31. В. В. Соболев. Оптические свойства и электронная структура неметаллов. II. Моделирование интегральных спектров элементарными полосами, Москва-Ижевск, Ин-т комп. исслед. (2012)
32. В. Вал. Соболев, В. В. Соболев. Журн. прикл. спектр., 85, N 4 (2018) 576—583 [V. Val. Sobolev, V. V. Sobolev. J. Appl. Spectr., 85 (2018) 630—637]
33. В. Вал. Соболев, В. В. Соболев. Изв. вузов. Физика, 61, N 7 (2018) 27—34
34. В. Вал. Соболев, В. В. Соболев. Изв. вузов. Физика, 62, N 5 (2019) 69—76
35. Y. Li, T. Ma, Y. Ren, T. Liu, X. Zou. Mater. Res. Express, 7 (2020) 036533(1—15)
Review
For citations:
Sobolev V.V., Kalugin A.I., Antonov E.A. PARAMETERS OF FUNDAMENTAL OPTICAL FUNCTIONS AND ELEMENTARY TRANSITION BANDS FOR COMPOUNDS Mg2X (X — Si, Ge, Sn). Zhurnal Prikladnoii Spektroskopii. 2021;88(1):150-158. (In Russ.)