SPECTROSCOPIC ANALYSIS OF THE INTERACTION BETWEEN SILVER NANOPARTICLES AND TRYPSIN
Abstract
The rapid development of nanoparticles (NPs) and their broad applications in medicine caused concerns about biological effects and biosafety. Here, the interaction of silver NPs (AgNPs) and trypsin is studied with ultraviolet-visible spectra, circular dichroism, and fluorescence spectra. Trypsin is exposed to various sizes and concentrations of AgNPs. The intensities of the trypsin ultraviolet-visible absorption peaks are proportional to the AgNP concentration and size. In the circular dichroism spectra, there was evidence that AgNPs affected the secondary structure of trypsin. Fluorescence spectra show that the formation of the protein-nanoparticle complexes alters the protein chromophore chemical environment or structure and quenches its fluorescence. Hence, the extent of AgNP binding of trypsin depends on both NP concentration and size, and changes the AgNPs physicochemical properties as well as the trypsin secondary structure. With regard to nanomaterial safety, the interaction of NPs with proteins must be explored further for establishing NP toxicity and design guidance.
Keywords
About the Authors
Min LiuChina
Nanjing 210094
Yi Li
China
Nanjing 210094
Luo Li
China
Nanjing 210094
Xiuyun Sun
China
Nanjing 210094
Jiansheng Li
China
Nanjing 210094
Rui Lu
China
Nanjing 210094
References
1. G. Mustafa, S. Komatsu, Curr. Proteomics, 14, No. 1, 3–12 (2017).
2. Y. W. Wang, J. S. Kim, G. H. Kim, K. S. Kim, Appl. Phys. Lett., 88, 143106 (2006).
3. J. Varalda, C. A. Dartora, A. J. A. de Oliveira, W. A. Ortiz, B. Vodungbo, M. Marangolo, F. Vidal, Y. Zheng, G. G. Cabrera, D. H. Mosca, Phys. Rev. B, 83, 045205 (2011).
4. Y. Z. Liu, Y. T. Hu, R. S. Chen, W. T. Zhan, H. W. Ni, P. M. Zhang, F. Liang, Curr. Nanosci., 12(999), 1–10 (2015).
5. D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, N. J. Halas, Nano Lett., 9, 666–671 (2009).
6. I. Lynch, K. A. Dawson, Nano Today, 3, No. 1-2, 40 (2008).
7. C. Nilofer, A. Sukhwal, A. Mohanapriya, P. Kangueane, Bioinformation, 13, No. 6, 164–173 (2017).
8. W. He, H. J. Dou, L. Zhang, L. J. Wang, R. Y. Wang, J. B. Chang, Spectrochim. Acta A, 173, 188–195 (2017).
9. S. T. Yang, Y. Liu, Y. W. Wang, A. N. Cao, Small, 9, No. 9-10, 1635–1653 (2013).
10. X. R. Li, Y. H. Yan, X. D. Cheng, W. Guo, Y. R. Peng, Int. J. Biol. Macromol., 114, 836–843 (2018).
11. R. Concalves, N. Mateus, I. Pianet, M. Laguerre, V. D. Freitas, Langmuir, 27, 13122–13129 (2011).
12. L. Gombos, J. Kardos, A. Patthy, P. Medveczky, L. Szilágyi, A. Málnási-Csizmadia, L. Gráf, Biochemistry, 47, No. 6, 1675–1684 (2008).
13. Y. Wan, Z. R. Guo, X. L. Jiang, K. Fang, X. Lu, Y. Zhang, N. Gu, J. Colloid Interface Sci., 394, 263–268 (2013).
14. W. R. Wang, R. R. Zhu, R. Xiao, H. Liu, S. L. Wang, Biol. Trace Elem. Res., 142, No. 3, 435–446 (2011).
15. P. D. Pino, B. Pelaz, Q. Zhang, P. Maffre, G. U. Nienhaus, W. J. Parak, Mater. Horiz., 1, 301 (2014).
16. S. S. Li, B. Q. Li, J. J. Liu, S. H. Lu, H. L. Zhai, Proteins, 86, 751–758 (2018).
17. S. Gautam, P. Dubey, M. N. Gupta, Colloids Surf. B, 102C, 879–883 (2012).
18. A. Gebregeorgis, C. Bhan, O. Wilson, D. Raghavan, J. Colloid Interface Sci., 389, No. 1, 31–41 (2013).
19. S. Navea, R. Tauler, E. Goormaghtigh, A. D. Juan, Proteins: Struct., Funct., Bioinform., 63, 527–541 (2006).
20. N. J. Greenfield, Nat. Protoc., 1, No. 6, 2876–2890 (2007).
21. L. Whitmore, B. A. Wallace, Biopolymers, 89, No. 5, 392–400 (2008).
22. L. N. Geng, X. Wang, N. Li, M. H. Xiang, K. Li, Colloids Surf. B, 34, No. 4, 231–238 (2004).
23. V. M. Bolanos-Garcia, S. Ramos, R. Castillo, J. Xicohtencatl-Cortes, J. Mas-Oliva, J. Phys. Chem. B, 105, 5757 (2001).
24. J. Huang, Y. Z. Yuan, H. Liang, Sci. China, Ser. B, 46, 387 (2003).
25. P. M. Tessier, J. Jinkoji, Y. C. Cheng, J. L. Prentice, A. M. Lenhoff, J. Am. Chem. Soc., 130, 3106–3112 (2008).
26. M. Lv, E. G. Zhu, Y. Y. Su, Q. N. Li, W. X. Li, Y. Zhao, Q. Huang, Prep. Biochem. Biotechnol., 39, 429–438 (2009).
27. C. Wang, Q. H. Wu, C. R. Li, Z. Wang, Anal. Sci., 23, No. 4, 429–433 (2007).
28. Q. X. Mu, W. Liu, Y. H. Xing, H. Y. Zhou, Z. W. Li, Y. Zhang, L. H. Ji, F. Wang, Z. K. Si, B. Zhang, B. Yan, J. Phys. Chem. C, 112, 3300–3307 (2008).
29. X. Y. Xie, Z. W. Wang, X. M. Zhou, X. R. Wang, J. Hazard. Mater., 192, No. 3, 1291–1298 (2011).
30. K. Sirine, A. J. Merrell, B. D. Ray, H. I. Petrach, Biophys. J., 106, No. 2, 513a (2014).
31. L. Song, H. N. Wang, S. W. Wang, H. Zhang, H. L. Cong, P. Tien, J. Mater. Sci., 49, No. 7 (2014).
32. H. Li, M. Wang, C. Z. Wang, W. Li, W. B. Qiang, H. Li, Anal. Chem., 85, No. 9 (2013).
33. S. H. D. Paoli, J. J. Park, C. W. Meuse, D. Pristinski, M. L. Becker, A. Karim, J. F. Douglas, ACS Nano, 4, No. 1, 365–379 (2009).
34. T. B. Yuan, A. Weljie, H. J. Vogel, Biochemistry, 37, No. 9, 3187–3195 (1998).
35. Y. Q. Wang, H. M. Zhang, G. C. Zhang, Q. H. Zhou, J. Mol. Struct., 886, No. 1-3, 77–84 (2008).
36. W. Norde, Colloids Surf. B, 61, No. 1, 1–9 (2008).
37. P. K. Jain, W. Y. Huang, M. A. EI-Sayed, Nano Lett., 7, No. 7, 2080–2088 (2007).
38. Y. Ikeda, N. Taniguchi, T. Noguchi, J. Biol. Chem., 275, No. 13, 9150–9156 (2000).
39. K. A. Dill, Biochemistry, 29, No. 31, 7133–7155 (1990).
Review
For citations:
Liu M., Li Y., Li L., Sun X., Li J., Lu R. SPECTROSCOPIC ANALYSIS OF THE INTERACTION BETWEEN SILVER NANOPARTICLES AND TRYPSIN. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):166(1)-166(13).