Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

FUSION OF THREE OPTICAL SENSORS FOR NONDESTRUCTIVE DETECTION OF WATER CONTENT IN LETTUCE CANOPIES

Abstract

Experiments were conducted to develop and assess a method by which the water content of a lettuce canopy can be nondestructively detected and estimated using a combination of spectra, RGB images, and canopy temperature. To this end, 130 lettuce samples grown in four different substrate water content levels were collected for data acquisition. In the spectroscopy procedure, five spectral intervals (380 variables) were selected by backward interval partial least squares and were further reduced to 48 wavelength variables, chosen using a genetic algorithm based on Savitzky–Golay smoothing and log (1/R) transformation. Then, 967, 1170, 1221, 1406, 1484, 1942, and 1985 nm optimum spectral variables were selected by the successive projection algorithm. Thirteen plant features were extracted from top- and front-view RGB images. These features comprised morphological, color, and textural features. An empirical crop water stress index was established based on dry and wet reference surfaces via thermal imagery. Subsequently, a principal component analysis was applied to the spectral variables and the image features, and an extreme learning machine was used to construct the multisensor and single-sensor models. The results show that the multisensor model had a correlation coefficient of prediction of 0.9018, which was found to be approximately 9.4 and 15.7% better than that of the spectral and image models. This work demonstrates that integrating spectra, RGB images, and canopy temperature with suitable algorithms offers a high potential for use in the nondestructive measurement of water content in lettuce, considerably improving accuracy over that using a single-sensor modality.

About the Authors

H. Y. Gao
School of Agricultural Engineering at Jiangsu University
China
Zhenjiang 212013


H. P. Mao
School of Agricultural Engineering at Jiangsu University
China
Zhenjiang 212013


X. D. Zhang
School of Agricultural Engineering at Jiangsu University
China
Zhenjiang 212013


I. Ullah
School of Agricultural Engineering at Jiangsu University
China
Zhenjiang 212013


X. H. Wei
School of Agricultural Engineering at Jiangsu University
China
Zhenjiang 212013


References

1. Ü. Kızıl, L. Genç, M. İ. Nalpulat, D. Ş. Apolyo, M. Mı̇rı̇k, Zemdirbyste, 99, 409–418 (2012).

2. A. M. H. Elmetwalli, A. N. Tyler, P. D. Hunter, C. A. Salt, Remote Sens. Lett., 3, 363–372 (2012).

3. M. El-Bially, H. Saudy, I. El-Metwally, M. Shahin, Agric. Water Manage., 208, 132–139 (2018).

4. N. Sanchez, A. Gonzalez-Zamora, J. Martinez-Fernandez, M. Piles, M. Pablos, Agric. Meteorol., 259, 141–153 (2018).

5. F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, Int. J. Remote Sens., 13, 461–470 (1992).

6. J. G. P. W. Clevers, L. Kooistra, M. E. Schaepman, Int. J. Appl. Earth Obs. Geoinform., 12, 119–125 (2010).

7. Y. Hendrawan, H. Murase, Expert Syst. Appl., 38, 14321–14335 (2011).

8. S. Zhuang, P. Wang, B. Jiang, M. S. Li, Z. H. Gong, Comput. Electron. Agric., 140, 461–468 (2017).

9. B. A. King, K. C. Shellie, Comput. Electron. Agric., 145, 122–129 (2018).

10. E. G. Kullberg, K. C. DeJonge, J. L. Chavez, Agric. Water Manage., 179, 64–73 (2017).

11. O. Adeyemi, I. Grove, S. Peets, Y. Domun, T. Norton, Comput. Electron. Agric., 153, 102–114 (2018).

12. H. Y. Gao, H. P. Mao, X. D. Zhang, Zemdirbyste, 102, 51–58 (2015).

13. H. P. Mao, H. Y. Gao, X. D. Zhang, F. Kumi, Sci. Hortic., 184, 1–7 (2015).

14. A. Khorsandi, A. Hemmat, S. A. Mireei, R. Amirfattahi, P. Ehsanzadeh, Agric. Water Manage., 204, 222–233 (2018).

15. H. G. Jones, Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology, Elsevier, London, 107–163 (2004).

16. P. R. Petrie, Y. N. Wang, S. Liu, S. Lam, M. A. Whitty, M. A. Skewes, Biosyst. Eng., 179, 126–139 (2019).

17. S. B. Idso, R. D. Jackson, P. J. Pinter Jr., R. J. Reginato, J. L. Hatfield, Agric. Meteorol., 24, 45–55 (1981).

18. P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, J. M. Gregoire, Remote Sens. Environ., 77, 22–33 (2001).

19. Y. Özyı̇ğit, M. Bı̇Lgen, J. Agric. Sci. Technol., 15, 1537–1545 (2013).

20. A. Savitzky, M. J. E. Golay, Anal. Chem., 36, 1627–1639 (1964).

21. T. Shi, Y. Chen, H. Liu, J. Wang, G. Wu, Appl. Spectrosc., 68, 831–837 (2014).

22. R. K. H. Galvão, M. C. U. Araujo, G. E. José, M. J. C. Pontes, E. C. Silva, T. C. B. Saldanha, Talanta, 67, 736–740 (2005).

23. R. Leardi, L. Nørgaard, J. Chemometr., 18, 486–497 (2004).

24. R. Leardi, J. Chemometr., 14, 643–655 (2010).

25. M. C. U. Araujo, T. C. B. Saldanha, R. K. H. Galvao, T. Yoneyama, H. C. Chame, V. Visani, Chemometr. Intell. Lab. Syst., 57, 65–73 (2001).

26. D. Story, M. Kacira, C. Kubota, A. Akoglu, L. An, Comput. Electron. Agric., 74, 238–243 (2010).

27. T. Hang, N. Lu, M. Takagaki, H. P. Mao, Sci. Hortic., 252, 113–120 (2019).

28. F. Bachofer, G. Queneherve, T. Zwiener, M. Maerker, V. Hochschild, Eur. J. Remote Sens., 49, 205–224 (2016).

29. N. Agam, Y. Cohen, J. A. J. Berni, V. Alchanatis, D. Kool, A. Dag, U. Yermiyahu, A. Ben-Gal, Agric. Water Manage., 118, 79–86 (2013).

30. F. R. S. Karl Pea, J. Sci., 2, 559–572 (1901).

31. G. B. Huang, D. H. Wang, Y. Lan, Int. J. Mach. Learn. Cybern., 2, 107–122 (2011).

32. S. Ullah, A. K. Skidmore, A. Ramoelo, T. A. Groen, M. Naeem, A. Ali, ISPRS-J. Photogramm. Remote Sens., 93, 56–64 (2014).

33. I. Torres, M. T. Sanchez, M. Benlloch-Gonzalez, D. Perez-Marin, Biosyst. Eng., 180, 50–58 (2019).

34. D. L. Mangus, A. Sharda, N. Q. Zhang, Comput. Electron. Agric., 121, 149–159 (2016).

35. W. H. Maes, K. Steppe, J. Exp. Bot., 63, 4671–4712 (2012).

36. Z. Thungo, H. Shimelis, A. O. Odindo, J. Mashilo, Acta Agric. Scand. Sect. B-Soil Plant Sci., 70, 177–194 (2020).

37. P. J. Zarco-Tejada, V. Gonzalez-Dugo, L. E. Williams, L. Suarez, J. A. J. Berni, D. Goldhamer, E. Fereres, Remote Sens. Environ., 138, 38–50 (2013).

38. S. Chung, L. E. Breshears, J.-Y. Yoon, Comput. Electron. Agric., 154, 93–98 (2018).


Review

For citations:


Gao H.Y., Mao H.P., Zhang X.D., Ullah I., Wei X.H. FUSION OF THREE OPTICAL SENSORS FOR NONDESTRUCTIVE DETECTION OF WATER CONTENT IN LETTUCE CANOPIES. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):170(1)-170(9).

Views: 320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)