MORPHOLOGY-DIRECTED NANOSCOPIC ENERGY TRANSFERS IN PLASMONIC-ORGANIC HYBRIDS
Abstract
We have experimentally realized a morphology-directed nanoscale energy transfer between an emitter, Eosin yellow dye, and three distinct gold nanoshapes, namely, nanospheres, nanopebbles, and nanoflowers. Raman spectroscopy is employed to ensure mutual interaction among the couple hybrids. The results explicitly show that plasmonic structures with sharp edges produce a strong localized electromagnetic field, which substantially suppresses the background fluorescence signals of the analyte. Further, the relationship between the observed quenching of the dye fluorescence and the geometrical factors of the gold nanoshapes is used to comprehend the influence of energy transfers on their enhanced third-order nonlinearity. The experimental findings reveal a relationship between the efficiency of energy transfers and the enhancement of the observed nonlinear optical coefficients. This study may act as the basis for designing active photonic nanocomposites based on their efficient energy transfer interactions.
Keywords
About the Authors
K. GambhirIndia
New Delhi-110012
P. Sharma
India
New Delhi-110012
R. Mehrotra
India
New Delhi-110012
References
1. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, N. J. Halas, Nano Lett., 11, No. 4, 1556–1560 (2011).
2. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, Y. S. Kivshar, Nano Lett., 15, No. 10, 6985–6990 (2015).
3. D. E. Chang, V. Vuletić, M. D. Lukin, Nature Photonics, 8, No. 9, 685–694 (2014).
4. S.-J. Ding, F. Nan, D.-J. Yang, X.-L. Liu, Y.-L. Wang, L. Zhou, Z.-H. Hao, Q.-Q. Wang, Sci. Rep., 5, 9735–9748 (2015).
5. M. Kucherenko, V. Stepanov, N. Y. Kruchinin, Opt. Spectrosc., 118, No. 1, 103–110 (2015).
6. A. J. Wilson, K. A. Willets, Ann. Rev. Anal. Chem., 9, No. 1, 27–43 (2016).
7. T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, H.-Q. Lin, Nano Lett., 11, No. 6, 2296–2303 (2011).
8. C. Tserkezis, N. Stefanou, M. Wubs, N. A. Mortensen, Nanoscale, 8, No. 40, 17532–17541 (2016).
9. C. J. Breshike, R. A. Riskowski, G. F. Strouse, J. Phys. Chem. C, 117, No. 45, 23942–23949 (2013).
10. J.-F. Li, C.-Y. Li, R. F. Aroca, Chem. Soc. Rev., 46, No. 13, 3962–3979 (2017).
11. S.-J. Ding, F. Nan, X.-L. Liu, Z.-H. Hao, L. Zhou, J. Zeng, H.-X. Xu, W. Zhang, Q.-Q. Wang, Sci. Rep., 7, No. 7, 43282–43289 (2017).
12. T. L. Doane, C. Burda, Chem. Soc. Rev., 41, No. 7, 2885–2911 (2012).
13. F. Nan, S.-J. Ding, L. Ma, Z.-Q. Cheng, Y.-T. Zhong, Y.-F. Zhang, Y.-H. Qiu, X. Li, L. Zhou, Q.-Q. Wang, Nanoscale, 8, No. 32, 15071–15078 (2016).
14. K. Okamoto, M. Funato, Y. Kawakami, K. Tamada, J. Photochem. Photobiol. C: Photochem. Rev., 32, 58–77 (2017).
15. N. Hoa, C. Ha, D. Nga, N. Lan, T. Nhung, N. Viet, J. Phys.: Conf. Ser. IOP Publ. (2016) 012009.
16. H. Chen, T. Ming, L. Zhao, F. Wang, L.-D. Sun, J. Wang, C.-H. Yan, Nano Today, 5, No. 5, 494–505 (2010).
17. E. Cao, W. Lin, M. Sun, W. Liang, Y. Song, Nanophotonics, 7, No. 1, 145–167 (2018).
18. A. V. Panov, J. Mod. Opt., 60, No. 11, 915–919 (2013).
19. M. A. Yurkin, A. A. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 171, 82–83 (2016).
20. M. A. Yurkin, A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 112, No. 13, 2234–2247 (2011).
21. A. Rakovich, I. Nabiev, A. Sukhanova, V. Lesnyak, N. Gaponik, Y. P. Rakovich, J. F. Donegan, ACS Nano, 7, No. 3, 2154–2160 (2013).
22. R. Ho-Wu, S. H. Yau, T. Goodson III, ACS Nano, 10, No. 1, 562–572 (2016).
23. K. Gambhir, P. Sharma, A. Sharma, S. Husale, R. Mehrotra, Dyes Pigments, 155, 313–322 (2018).
24. T. Sen, A. Patra, J. Phys. Chem. C, 116, No. 33, 17307–17317 (2012).
25. P. C. Ray, Z. Fan, R. A. Crouch, S. S. Sinha, A. Pramanik, Chem. Soc. Rev., 43, No. 17, 6370–6404 (2014).
26. S. Rakshit, S. P. Moulik, S. C. Bhattacharya, J. Colloid Interface Sci., 491, 349–357 (2017).
27. H. Sahoo, J. Photochem. Photobiol. C: Photochem. Rev., 12, No. 1, 20–30 (2011).
28. E. Oh, A. L. Huston, A. Shabaev, A. Efros, M. Currie, K. Susumu, K. Bussmann, R. Goswami, F. K. Fatemi, I. L. Medintz, Sci. Rep., 6, 35538–35547 (2016).
29. K. Gambhir, B. Ray, R. Mehrotra, P. Sharma, Opt. Laser Technol., 90, 201–210 (2017).
30. Y. Jiang, X.-J. Wu, Q. Li, J. Li, D. Xu, Nanotechnology, 22, No. 38, 385601–385611 (2011).
31. N. G. Greeneltch, A. S. Davis, N. A. Valley, F. Casadio, G. C. Schatz, R. P. Van Duyne, N. C. Shah, J. Phys. Chem. A, 116, No. 48, 11863–11869 (2012).
32. J. R. Lombardi, R. L. Birke, J. Phys. Chem. C, 112, No. 14, 5605–5617 (2008).
33. P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier (2017).
34. V. A. Narayanan, D. L. Stokes, T. Vo‐Dinh, J. Raman Spectrosc., 25, No. 6, 415–422 (1994).
35. T. Wang, X. Hu, S. Dong, J. Phys. Chem. B, 110, No. 34, 16930–16936 (2006).
36. F. Shan, X.-Y. Zhang, X.-C. Fu, L.-J. Zhang, D. Su, S.-J. Wang, J.-Y. Wu, T. Zhang, Sci. Rep., 7, No. 1, 6813–6820 (2017).
37. D. Wei, S. Chen, Q. Liu, Appl. Spectrosc. Rev., 50, No. 5, 387–406 (2015).
38. E. C. Le Ru, L. C. Schroeter, P. G. Etchegoin, Anal. Chem., 84, No. 11, 5074–5079 (2012).
39. B. Negru, M. O. McAnally, H. E. Mayhew, T. W. Ueltschi, L. Peng, E. A. Sprague-Klein, G. C. Schatz, R. P. Van Duyne, J. Phys. Chem. C, 121, No. 48, 27004–27008 (2017).
40. P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, A. Parker, J. Raman Spectrosc., 32, No. 12, 983–988 (2001).
41. E. W. Van Stryland, M. Sheik-Bahae, In Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Routledge, 671–708 (2018).
42. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett., 14, No. 17, 955–957 (1989).
43. S. Eustis, M. A. El-Sayed, Chem. Soc. Rev., 35, No. 3, 209–217 (2006).
44. L. M. Liz-Marzán, Langmuir, 22, No. 1, 32–41 (2006).
45. N. Sadegh, H. Khadem, S. Tavassoli, Appl. Opt., 55, No. 22, 6125–6129 (2016).
46. D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, No. 2, 431–441 (1963).
47. S. Link, M. A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, ACS Publ. (1999).
48. M. A. Mahmoud, D. O’Neil, M. A. El-Sayed, Nano Lett., 14, No. 2, 743–748 (2014).
49. A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, G. Strangi, Appl. Phys. Lett., 104, No. 10, 103103–103117 (2014).
50. T. Sen, S. Sadhu, A. Patra, Appl. Phys. Lett., 91, No. 4, 043104–043115 (2007).
51. C. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. Reich, G. Strouse, J. Am. Chem. Soc., 127, No. 9, 3115–3119 (2005).
52. T. Jennings, M. Singh, G. Strouse, J. Am. Chem. Soc., 128, No. 16, 5462–5467 (2006).
53. A. McLintock, H. J. Lee, A. W. Wark, Phys. Chem. Chem. Phys., 15, No. 43, 18835–18843 (2013).
54. L. Huang, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 55, No. 15, 4808–4813 (2016).
55. A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 45, No. 47, 7896–7936 (2006).
56. J. Xie, S. Shi, T. Zhang, N. Mehrkens, M. Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed., 54, No. 20, 6046–6050 (2015).
Review
For citations:
Gambhir K., Sharma P., Mehrotra R. MORPHOLOGY-DIRECTED NANOSCOPIC ENERGY TRANSFERS IN PLASMONIC-ORGANIC HYBRIDS. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):171(1)-171(12).