Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

MORPHOLOGY-DIRECTED NANOSCOPIC ENERGY TRANSFERS IN PLASMONIC-ORGANIC HYBRIDS

Abstract

We have experimentally realized a morphology-directed nanoscale energy transfer between an emitter, Eosin yellow dye, and three distinct gold nanoshapes, namely, nanospheres, nanopebbles, and nanoflowers. Raman spectroscopy is employed to ensure mutual interaction among the couple hybrids. The results explicitly show that plasmonic structures with sharp edges produce a strong localized electromagnetic field, which substantially suppresses the background fluorescence signals of the analyte. Further, the relationship between the observed quenching of the dye fluorescence and the geometrical factors of the gold nanoshapes is used to comprehend the influence of energy transfers on their enhanced third-order nonlinearity. The experimental findings reveal a relationship between the efficiency of energy transfers and the enhancement of the observed nonlinear optical coefficients. This study may act as the basis for designing active photonic nanocomposites based on their efficient energy transfer interactions.

About the Authors

K. Gambhir
Academy of Scientific & Innovative Research (AcSIR) at CSIR-National Physical Laboratory campus; Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg
India
New Delhi-110012


P. Sharma
Academy of Scientific & Innovative Research (AcSIR) at CSIR-National Physical Laboratory campus; Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg
India
New Delhi-110012


R. Mehrotra
Academy of Scientific & Innovative Research (AcSIR) at CSIR-National Physical Laboratory campus; Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg
India
New Delhi-110012


References

1. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, N. J. Halas, Nano Lett., 11, No. 4, 1556–1560 (2011).

2. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, Y. S. Kivshar, Nano Lett., 15, No. 10, 6985–6990 (2015).

3. D. E. Chang, V. Vuletić, M. D. Lukin, Nature Photonics, 8, No. 9, 685–694 (2014).

4. S.-J. Ding, F. Nan, D.-J. Yang, X.-L. Liu, Y.-L. Wang, L. Zhou, Z.-H. Hao, Q.-Q. Wang, Sci. Rep., 5, 9735–9748 (2015).

5. M. Kucherenko, V. Stepanov, N. Y. Kruchinin, Opt. Spectrosc., 118, No. 1, 103–110 (2015).

6. A. J. Wilson, K. A. Willets, Ann. Rev. Anal. Chem., 9, No. 1, 27–43 (2016).

7. T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, H.-Q. Lin, Nano Lett., 11, No. 6, 2296–2303 (2011).

8. C. Tserkezis, N. Stefanou, M. Wubs, N. A. Mortensen, Nanoscale, 8, No. 40, 17532–17541 (2016).

9. C. J. Breshike, R. A. Riskowski, G. F. Strouse, J. Phys. Chem. C, 117, No. 45, 23942–23949 (2013).

10. J.-F. Li, C.-Y. Li, R. F. Aroca, Chem. Soc. Rev., 46, No. 13, 3962–3979 (2017).

11. S.-J. Ding, F. Nan, X.-L. Liu, Z.-H. Hao, L. Zhou, J. Zeng, H.-X. Xu, W. Zhang, Q.-Q. Wang, Sci. Rep., 7, No. 7, 43282–43289 (2017).

12. T. L. Doane, C. Burda, Chem. Soc. Rev., 41, No. 7, 2885–2911 (2012).

13. F. Nan, S.-J. Ding, L. Ma, Z.-Q. Cheng, Y.-T. Zhong, Y.-F. Zhang, Y.-H. Qiu, X. Li, L. Zhou, Q.-Q. Wang, Nanoscale, 8, No. 32, 15071–15078 (2016).

14. K. Okamoto, M. Funato, Y. Kawakami, K. Tamada, J. Photochem. Photobiol. C: Photochem. Rev., 32, 58–77 (2017).

15. N. Hoa, C. Ha, D. Nga, N. Lan, T. Nhung, N. Viet, J. Phys.: Conf. Ser. IOP Publ. (2016) 012009.

16. H. Chen, T. Ming, L. Zhao, F. Wang, L.-D. Sun, J. Wang, C.-H. Yan, Nano Today, 5, No. 5, 494–505 (2010).

17. E. Cao, W. Lin, M. Sun, W. Liang, Y. Song, Nanophotonics, 7, No. 1, 145–167 (2018).

18. A. V. Panov, J. Mod. Opt., 60, No. 11, 915–919 (2013).

19. M. A. Yurkin, A. A. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 171, 82–83 (2016).

20. M. A. Yurkin, A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 112, No. 13, 2234–2247 (2011).

21. A. Rakovich, I. Nabiev, A. Sukhanova, V. Lesnyak, N. Gaponik, Y. P. Rakovich, J. F. Donegan, ACS Nano, 7, No. 3, 2154–2160 (2013).

22. R. Ho-Wu, S. H. Yau, T. Goodson III, ACS Nano, 10, No. 1, 562–572 (2016).

23. K. Gambhir, P. Sharma, A. Sharma, S. Husale, R. Mehrotra, Dyes Pigments, 155, 313–322 (2018).

24. T. Sen, A. Patra, J. Phys. Chem. C, 116, No. 33, 17307–17317 (2012).

25. P. C. Ray, Z. Fan, R. A. Crouch, S. S. Sinha, A. Pramanik, Chem. Soc. Rev., 43, No. 17, 6370–6404 (2014).

26. S. Rakshit, S. P. Moulik, S. C. Bhattacharya, J. Colloid Interface Sci., 491, 349–357 (2017).

27. H. Sahoo, J. Photochem. Photobiol. C: Photochem. Rev., 12, No. 1, 20–30 (2011).

28. E. Oh, A. L. Huston, A. Shabaev, A. Efros, M. Currie, K. Susumu, K. Bussmann, R. Goswami, F. K. Fatemi, I. L. Medintz, Sci. Rep., 6, 35538–35547 (2016).

29. K. Gambhir, B. Ray, R. Mehrotra, P. Sharma, Opt. Laser Technol., 90, 201–210 (2017).

30. Y. Jiang, X.-J. Wu, Q. Li, J. Li, D. Xu, Nanotechnology, 22, No. 38, 385601–385611 (2011).

31. N. G. Greeneltch, A. S. Davis, N. A. Valley, F. Casadio, G. C. Schatz, R. P. Van Duyne, N. C. Shah, J. Phys. Chem. A, 116, No. 48, 11863–11869 (2012).

32. J. R. Lombardi, R. L. Birke, J. Phys. Chem. C, 112, No. 14, 5605–5617 (2008).

33. P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier (2017).

34. V. A. Narayanan, D. L. Stokes, T. Vo‐Dinh, J. Raman Spectrosc., 25, No. 6, 415–422 (1994).

35. T. Wang, X. Hu, S. Dong, J. Phys. Chem. B, 110, No. 34, 16930–16936 (2006).

36. F. Shan, X.-Y. Zhang, X.-C. Fu, L.-J. Zhang, D. Su, S.-J. Wang, J.-Y. Wu, T. Zhang, Sci. Rep., 7, No. 1, 6813–6820 (2017).

37. D. Wei, S. Chen, Q. Liu, Appl. Spectrosc. Rev., 50, No. 5, 387–406 (2015).

38. E. C. Le Ru, L. C. Schroeter, P. G. Etchegoin, Anal. Chem., 84, No. 11, 5074–5079 (2012).

39. B. Negru, M. O. McAnally, H. E. Mayhew, T. W. Ueltschi, L. Peng, E. A. Sprague-Klein, G. C. Schatz, R. P. Van Duyne, J. Phys. Chem. C, 121, No. 48, 27004–27008 (2017).

40. P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, A. Parker, J. Raman Spectrosc., 32, No. 12, 983–988 (2001).

41. E. W. Van Stryland, M. Sheik-Bahae, In Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Routledge, 671–708 (2018).

42. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett., 14, No. 17, 955–957 (1989).

43. S. Eustis, M. A. El-Sayed, Chem. Soc. Rev., 35, No. 3, 209–217 (2006).

44. L. M. Liz-Marzán, Langmuir, 22, No. 1, 32–41 (2006).

45. N. Sadegh, H. Khadem, S. Tavassoli, Appl. Opt., 55, No. 22, 6125–6129 (2016).

46. D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, No. 2, 431–441 (1963).

47. S. Link, M. A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, ACS Publ. (1999).

48. M. A. Mahmoud, D. O’Neil, M. A. El-Sayed, Nano Lett., 14, No. 2, 743–748 (2014).

49. A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, G. Strangi, Appl. Phys. Lett., 104, No. 10, 103103–103117 (2014).

50. T. Sen, S. Sadhu, A. Patra, Appl. Phys. Lett., 91, No. 4, 043104–043115 (2007).

51. C. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. Reich, G. Strouse, J. Am. Chem. Soc., 127, No. 9, 3115–3119 (2005).

52. T. Jennings, M. Singh, G. Strouse, J. Am. Chem. Soc., 128, No. 16, 5462–5467 (2006).

53. A. McLintock, H. J. Lee, A. W. Wark, Phys. Chem. Chem. Phys., 15, No. 43, 18835–18843 (2013).

54. L. Huang, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 55, No. 15, 4808–4813 (2016).

55. A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 45, No. 47, 7896–7936 (2006).

56. J. Xie, S. Shi, T. Zhang, N. Mehrkens, M. Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed., 54, No. 20, 6046–6050 (2015).


Review

For citations:


Gambhir K., Sharma P., Mehrotra R. MORPHOLOGY-DIRECTED NANOSCOPIC ENERGY TRANSFERS IN PLASMONIC-ORGANIC HYBRIDS. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):171(1)-171(12).

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)