ANALYSIS OF HUMAN URINARY STONES AND GALLSTONES BY FOURIER TRANSFORM INFRARED ATTENUATED TOTAL REFLECTANCE SPECTROSCOPY
Abstract
The aim of this study was to analyze the composition of urinary stones and gallstones and assess their prevalence as a function of age and sex. A total of 425 urinary stones and 108 gallstones was analyzed for composition using FTIR-ATR spectroscopy. According to the absorption band spectra obtained using FTIR-ATR, urinary stones were classified into the following groups: calcium oxalate (55.6%), uric acid (24.1%), hydroxyapatite (7.3%), struvite (9.0%), brucite (2.1%), cystine (1.0%) and ammonium urate (0.2%). Gallstones were classified into cholesterol (66.7%) and pigment stones (33.3%). As to urinary stones, they are more common in males (62.0%) than in females (38.0%) (ratio ♂/♀: 1.7), calcium oxalate stones being the most common ones in both sexes. Women have a higher frequency of hydroxyapatite and struvite than men (p<0.05) whereas males have a higher frequency of calcium oxalate and uric acid than women (p<0.05). Calcium oxalate stones are more common in the 30–69 years age group (p<0.05), while uric acid stones are more common in ages >50 years (p<0.05). As to gallstones, they are more common in women (59.3%) than in men (40.7%) (ratio ♀/♂: 1.4), cholesterol stones being the most prevalent in both sexes. Women have greater frequency of cholesterol stones than men (p<0.05) and men have higher frequency of pigment stones than women (p<0.05). Cholesterol stones were more common in ages <60 year (p<0.05), whereas pigment stones were more common in ages ³60 years (p<0.05). The results of this study show that the physical analysis of stones using FTIR-ATR spectroscopy provides fairly accurate information on its composition, and sex and age have been seen to have an influence on the type of stone formed.
About the Author
F. J. HermidaSpain
A Coruña
References
1. O. W. Moe, Lancet, 367, 333–344 (2006).
2. B. J. Ha, S. Park, Biomater. Res., 22, 18 (2018).
3. L. M. Stinton, R. P. Myers, E. A. Shaffer, Gastroenterol. Clin. N. Am., 39, 157–169 (2010).
4. G. P. Kasidas, C. T. Samuell, T. B. Weir, Ann. Clin. Biochem., 41, 91–97 (2004).
5. A. Basiri, M. Taheri, F. Taheri, Urol. J., 9, 445–454 (2012).
6. E. H. Yoo, H. J. Oh, S. Y. Lee, Clin. Chem. Lab. Med., 46, 376–381 (2008).
7. C. Türk, A. PetříK, K. Sarica, C. Seitz, A. Skolarikos, M. Straub, T. Knoll, Eur. Urol., 69, 468–474 (2016).
8. J. C. Lieske, A. D. Rule, A. E. Krambeck, J. C. Williams, E. C. Bergstralh, R. A. Mehta, T. P. Moyer, Clin. J. Am. Soc. Nephrol., 9, 2141–2146 (2014).
9. A. Cariati, Indian J. Surg., 77, S376–S380 (2015).
10. S. Tamošaityté, V. Hendrixson, A. Želvys, R. Tyla, Z. A. Kučinskiene, F. Jankevičius, M. Pučetaitè, V. Jablonskiene, V. Šablinskas, J. Biomed. Opt., 18, 027011 (2013).
11. R. H. Ma, X. B. Luo, Q. Li, H. Q. Zhong, Int. J. Surg., 41, 150–161 (2017).
12. R. Selvaraju, G. Thiruppathi, A. Raja, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 93, 260–265 (2012).
13. O. Kleiner, J. Ramesh, M. Huleihel, B. Cohen, K. Kantarovich, C. Levi, B. Polyak, R. S. Marks, J. Mordehai, Z. Cohen, S. Mordechai, BMC Gastronterol., 2, 3 (2002).
14. C. L. Cheng, H. H. Chang, T. H. Chen, P. J. Tsai, Y. T. Huang, P. J. Huang, S. Y. Lin, Dig. Liver Dis., 48, 519–527 (2016).
15. T. Qiao, R. H. Ma, X. B. Luo, L. Q. Yang, Z. L. Luo, P. M. Zheng, PLoS One., 8, e74887 (2013).
16. A. Hesse, R. Kruse, W. J. Geilenkeuser, M. Schmidt, Clin. Chem. Lab. Med., 43, 298–303 (2005).
17. R. Siener, N. Buchholz, M. Daudon, B. Hess, T. Knoll, P. J. Osther, J. R. Santos, K. Sarica, O. Traxer, A. Trinchieri, PLoS One., 11, e0156606 (2016).
18. X. Yang, C. Zhang, S. Qi, Z. Zhang, Q. Shi, C. Liu, K. Yang, E. Du, N. Li, J. Shi, Y. Xu, J. Clin. Lab. Anal., 30, 873–879 (2016).
19. I. Miguel–Elízaga, A. Martínez–Ruiz, F. Avilés–Plaza, J. A. Noguera–Velasco, P. Martínez-Hernández, S. Parra-Pallarés. Clin. Chem. Lab. Med., 50, 545–548 (2012).
20. R. Siener, A. Hesse, Eur. Urol., 42, 289–296 (2002).
21. A. Costa–Bauzá, M. Ramis, V. Montesinos, A. Conte, P. Pizá, E. Pieras, F. Grases, World J. Urol., 25, 415–421 (2007).
22. A. Viljoen, R. Chaudhry, J. Bycroft, Ann. Clin. Biochem., 56, 15–27 (2019).
23. H. W. Chen, Y. C. Chen, F. M. Yang, W. J. Wu, C. C. Li, Y. Y. Chang, Y. H. Chou, Sci. Rep., 8, 6077 (2018).
24. M. Daudon, H. Bouzidi, D. Bazin, Urol. Res., 38, 459–467 (2010).
25. R. K. Flannigan, A. Battison, S. De, M. R. Humphreys, M. Bader, E. Lellig, M. Monga, B. H. Chew, D. Lange, Can. Urol. Assoc. J., 12, 131–136 (2018).
26. E. A. Shaffer, Best Pract. Res. Clin. Gastroenterol., 20, 981–996 (2006).
27. B. M. Jarrar, M. A. Al Rowaili, Malays. J. Med. Sci., 18, 47–52 (2011).
28. H. Weerakoon, J. G. S. Ranasinghe, A. Navaratna, R. Sivakanesan, K. B. Galketiya, S. Rosairo, BMC Gastroenterol., 14, 88 (2014).
29. K. J. Van Erpecum, Clin. Res. Hepatol. Gastroenterol., 35, 281–287 (2011).
30. T. Liu, W. Wang, Y. Ji, Y. Wang, X. Liu, L. Cao, S. Liu, PLoS One., 13, e0196457 (2018).
31. A. K. Diehl, W. H. Schwesinger, D. R. Holleman Jr., J. B. Chapman, W. E. Kurtin, Am. J. Gastroenterol., 90, 967–972 (1995).
32. J. H. Siegel, F. E. Kasmin, Gut, 41, 433–435 (1997).
33. M. Acalovschi, World J. Gastroenterol, 20, 7277–7285 (2014).
34. K. Julka, C. W. Ko, Infect. Dis. Clin. N. Am., 24, 885–898 (2010).
Review
For citations:
Hermida F.J. ANALYSIS OF HUMAN URINARY STONES AND GALLSTONES BY FOURIER TRANSFORM INFRARED ATTENUATED TOTAL REFLECTANCE SPECTROSCOPY. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):172(1)-172(10).