Infrared Line Collisional Parameters of PН3 in Hydrogen: Measurements with Second-Order Approximation of Perturbation Theory
Abstract
Room-temperature absorption by PH3-H2 mixtures in the ν2 and ν4 bands of phosphine (PH3) has been measured for low pressures. Fits of these spectra are made to determine the width of isolated lines and line mixing in a first-order Rosenkranz approximation. From the previous determinations, we deduce remarks on the lack of accuracy of predicting the collisional process. With the first-order Rosenkranz approximation, the collisional parameters are considered linear with pressure. In this work, we have considered spectra recorded for three doublets: A1 and A2 lines in the ν2 and ν4 bands of PH3 diluted with higher H2 pressure. We show that the line shifts are non-linear with perturber pressures, which requires testing the fits of the recorded spectra with profiles developed in the second-order approximation of the perturbation theory. Consequently, the first- and second-order mixing coefficients are determined and discussed. Throughout this study, we also show that the change in the intensity distribution is provided by the population exchange between low energy levels for the two components of doublets A1 and A2 lines and is described through the second-order mixing parameter. Thereby, we show the mixing effect on line width.
About the Authors
J. SalemTunisia
2112 Gafsa.
R. Charguia
Tunisia
1060 Tunis.
R. ben Younes
Tunisia
2112 Gafsa.
References
1. S. T. Ridgway, L. Wallace, G. R. Smith, Astrophys. J, 207, 1002-1006 (1976).
2. R. A. Hanel, B. Conrath, M. Flasar, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, Science, 204, 972-976 (1979), doi: 10.1126/science.204.4396.972-a.
3. V. Kunde, R. Hanel, W. Maguire, D. Gautier, J. P. Baluteau, A. Marten, A. Chedin, N. Husson, N. Scott, Astrophys. J., 263, 443-467 (1982).
4. H. P. Larson, U. Fink, H. A. Smith, D. Scott Davies, Astrophys. J., 240, 327-337 (1980).
5. J. P. Bouanich, J. Salem, H. Aroui, J. Walrand, G. Blanquet, J. Quant. Spectrosc. Radiat. Transf., 84, 195-205 (2004), doi: 10.1016/S0022-4073(03)00143-2.
6. J. Salem, H. Aroui, J. P. Bouanich, J. Walrand, G. Blanquet, J. Mol. Spectrosc., 225, 174-181 (2004), doi: 10.1016/j.jms.2004.02.025.
7. J. Salem, J. P. Bouanich, J. Walrand, H. Aroui, G. Blanquet, J. Mol. Spectrosc., 228, 23-30 (2004), doi: 10.1016/j.jms.2004.06.015.
8. J. Salem, J. P. Bouanich, J. Walrand, H. Aroui, G. Blanquet, J. Mol. Spectrosc., 232, 247-254 (2005), doi: 10.1016/j.jms.2005.04.014.
9. J. P. Bouanich, J. Walrand, G. Blanquet, J. Mol. Spectrosc., 232, 40-46 (2005), doi: 10.1016/j.jms.2005.02.005.
10. J. P. Bouanich, G. Blanquet, J. Mol. Spectrosc., 241, 186-191 (2007), doi: 10.1016/j.jms.2006.12.006.
11. J. Salem, G. Blanquet, M. Lepere, H. Aroui, J. Mol. Spectrosc., 297, 58-61 (2014), doi: org/10.1016/j.jms.2014.01.003.
12. J. Salem, G. Blanquet, M. Lepere, H. Aroui, J. Quant. Spectrosc. Radiat. Transf., 173, 34-39 (2016), http://dx.doi.org/10.1016/j.jqsrt.2016.01.010.
13. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, M. Lepere, J. Mol. Spectrosc., 221, 80-92 (2003), doi: 10.1016/S0022-2852(03)00178-4.
14. N. Maaroufi, F. Kwabia Tchana, X. Landsheere, H. Aroui, J. Quant. Spectrosc. Radiat. Transf., 219, 383-392 (2018), https://doi.org/10.1016/j.jqsrt.2018.09.001.
15. F. Hmida, S. Galalou, F. Kwabia Tchana, M. Rotger, H. Aroui, J. Quant. Spectrosc. Radiat. Transf., 189, 351-360 (2017), https://doi.org/10.1016/j.jqsrt.2016.12.015.
16. L. Fissiaux, G. Blanquet, M. Lepere, J. Quant. Spectrosc. Radiat. Transf., 113, 1233-1239 (2012), doi: 10.1016/j.jqsrt.2012.01.021.
17. F. Thibault, J. Boissoles, R. Le Doucen, R. Farrenq, M. Morillon-Chapey, C. Boulet, J. Chem. Phys., 97, 4623-4632 (1992), doi: 10.1063/1.463865.
18. J. Salem, G. Blanquet, M. Lepere, R. ben Younes, Mol. Phys., 116, 1280-1289 (2018), doi: 10.1080/00268976.2017.1423125.
19. E. W. Smith, J. Chem. Phys., 74, 6658-6673 (1981), http://dx.doi.org/10.1063/1.441112.
20. P. W. Rosenkranz, IEEE. Trans. Antenn. Propag., 23, 498-506 (1975), doi: 10.1109/TAP.1975.1141119.
21. E. Baeten, G. Blanquet, J. Walrand, C. P. Courtoy, Can. J. Phys., 62, 1286-1292 (1984), doi: 10.1139/p84-174.
22. M. Lepere, G. Blanquet, J. Walrand, J. P. Bouanich, J. Mol. Spectrosc., 180 218-226 (1996), https://doi.org/10.1006/jmsp.1996.0245.
23. W. H. Press, B. P. Flannery, S. A. Tendolsky, W. T. Vetterling, Numerical Recipes - The Art of Scientific Computing (FORTRAN Version), Cambridge Univ. Press, Cambridge (1992).
24. Hitran Data Bases, http://www.hitran.org/results/5a1856e6.par.
25. G. Blanquet, J. Walrand, J. P. Bouanich, J. Mol. Spectrosc., 159, 137-143 (1993), https://doi.org/10.1006/jmsp.1993.1112.
26. J. HumHcek, J. Quant. Spectrosc. Radiat. Transf., 21, 309-313 (1979), https://doi.org/10.1016/0022-4073(79)90062-1.
27. A. S. Pine, J. Quant. Spectrosc. Radiat. Transf., 57, 145-155 (1997), https://doi.org/10.1016/S0022-4073(96)00129-X.
28. L. R. Brown, R. L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc., 215, 178-203 (2002), doi: 10.1016/S0022-2852(02)98638-8.
29. V. M. Devi, D. C. Benner, I. Kleiner, R. L. Sams, L. N. Fletcher, J. Mol. Spectrosc., 302, 17-33 (2014), https://doi.org/10.1016/j.jms.2014.06.003.
Review
For citations:
Salem J., Charguia R., ben Younes R. Infrared Line Collisional Parameters of PН3 in Hydrogen: Measurements with Second-Order Approximation of Perturbation Theory. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):351-359.