Influence of the Frequency Tuning Rate of a Diode Laser on the Shape of the Absorption Line Contour when Measuring Low Concentrations in an External Cavity with Off-Axis Alignment
Abstract
The asymmetry of the recorded contours of the absorption lines of water vapor in a quartz tube at room temperature at pressures of 0.03-1 Torr was investigated. The measurements were carried out using the method of diode laser spectroscopy with an external optical cavity. In order to accurately define narrow contours of absorption lines off-axis alignment of the resonator was used. The measurements were carried out with different laser frequency tuning rates of 0.1-0.8 cm-1/ms with mirrors with 99 and 99.98% reflectivity and different directions of laser frequency tuning. Line asymmetry occurs due to the time delay of radiation inside the cavity. The results of numerical modeling taking into account the filling of the cavity with laser radiation and its decaying in time at the cavity output are in good agreement with the experimental data.
About the Authors
V. V. LagunovRussian Federation
Moscow, 119991 GSP-1.
I. V. Nikolaev
Russian Federation
Moscow, 119991 GSP-1.
V. N. Ochkin
Russian Federation
Moscow, 119991 GSP-1.
References
1. G. Wang, S. Crumeyrolle, B. Hanoune, C. Coeur, H. Yi, E. Fertein, M. W. Sigrist, W. Chen. OSA Technical Digest, ET3A.3 (2018), https://doi.org/10.1364/EE.2018.ET3A.3
2. R. Harmon, K. Shughrue, J. Remus, M. Wise, L. East, R. Hark. Anal. Bioanal. Chem., 400 (2011) 3377—3382, https://doi.org/10.1007/s00216-011-5015-2
3. K. Parameswaran, D. Rosen, M. Allen, A. Ganz, T. Risby. Appl. Opt., 48 (2009) B73—B79, https://doi.org/10.1364/ao.48.000b73
4. P. Mauchien, A. Pailloux, T. Vercouter. Laser Spectroscopy for Sensing, Elsevier (2014) 522—543, https://doi.org/54310.1533/9780857098733.3.522
5. G. C. Bjorklund. Opt. Lett., 5 (1980) 15—17, https://doi.org/10.1364/OL.5.000015
6. A. O'Keefe, J. J. Scherer, J. B. Paul. Chem. Phys. Lett., 307 (1999) 5—6, https://doi.org/10.1016/S0009-2614(99)00547-3
7. A. O'Keefe, D. A. G. Deacon. Rev. Sci. Instrum., 59, N 12 (1988) 2544—2551, https://doi.org/10.1063/1.1139895
8. D. Baer, J. Paul, M. Gupta, A. O'Keefe. Appl. Phys. B, 75 (2002) 261, https://doi.org/10.1007/s00340-002-0971-z
9. J. B. Paul, L. Lapson, J. G. Anderson. Appl. Opt., 40 (2001) 4904—491°, https://doi.org/10.1364/AO.40.004904
10. A. V. Bernatskiy, V. V. Lagunov, V. N. Ochkin. Quantum Electron., 49, N 2 (2019) 157—161, https://doi.org/10.1070/QEL16819
11. A. V. Bernatskiy, I. V. Kochetov, V. V. Lagunov, V. N. Ochkin. Phys. Plasm., 26, N 8 (2019) 83511, https://doi.org/10.1063Z1.5118830
12. A. V. Bernatskiy, V. V. Lagunov, V. N. Ochkin, S. N. Tskhai. Laser Phys. Lett., 13, N 7 (2016) 75702, https://doi.org/10.1088/1612-2011/13/7/075702
13. A. V. Bernatskiy, I. V. Kochetov, V. N. Ochkin. Plasma Phys. Rep., 46, N 9 (2020) 874—919, https://doi.org/10.1134/S1063780X20090020
Review
For citations:
Lagunov V.V., Nikolaev I.V., Ochkin V.N. Influence of the Frequency Tuning Rate of a Diode Laser on the Shape of the Absorption Line Contour when Measuring Low Concentrations in an External Cavity with Off-Axis Alignment. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):373-377. (In Russ.)