Nonlinear Reflection of Light from Planar Magnetoplasmonic Nanostructure
Abstract
The nonlinear equatorial Kerr effect in a planar nanostructure consisting of ferromagnetic and plasmon layers and located between two optically transparent dielectrics is studied theoretically. Calculations are made of nonlinear surface polarizations of interfaces between media that are sources of the second harmonic (SH), angular dependences of the intensities of the reflected SH and magnetic contrasts for different thicknesses of the noble metal layer. It is shown that when a p-polarization wave is incident on the nanostructure, the SH intensity is maximal in the region of the plasmon resonance of the basic frequency on the metal surface adjacent to the lower dielectric. A significant effect of the thickness and location of the plasmon layer on both the SH intensity and the magnetic contrast has been established.
About the Authors
T. M. ChmerevaRussian Federation
Orenburg, 460018.
M. G. Kucherenko
Russian Federation
Orenburg, 460018.
References
1. А. Н. Калиш, В. И. Белотелов. ФТТ, 58, вып. 8 (2016) 1513—1521
2. A. K. Zvezdin, V. A. Kotov. Modern Magnetooptics and Magnetooptical Materials. IOP Publishing, Bristol, Philadelphia (1997) 28—30
3. G. Armelles, A. Cebollada, A. Garci'a-Marti'n, J. M. Garci'a-Marti'n, M. U. Gonzalez, J. B. Gonzalez-Di'az, E. Ferreiro-Vila, J. F. Torrado. J. Opt. A: Pure Appl. Opt., 11 (2009) 114023
4. J. F. Torrado, J. B. Gonzalez-Di'az, M. U. Gonzalez, A. Garci'a-Marti'n, G. Armelles. Opt. Express, 18 (2010) 15635—15642, https://doi.org/10.1364/OE.18.015635
5. I. S. Maksymov. Nanomaterials, 5 (2015) 577—613, https://doi.org/10.3390/nano5020577
6. G. Armelles, A. Cebollada, A. Garci'a-Marti'n, M. U. Gonzalez. Adv. Opt. Mater, 7 (2013) 10—35, https://doi.org/10.1002/adom.201200011
7. N. Passarelli, L. A. Perez, E. A. Coronado. ACS Nano, 8, N 10 (2014) 9723—9728, 10.1021/nn505145v
8. Y. Demidenko, D. Makarov, O. G. Schmidt, V. Lozovski. J. Opt. Soc. Am. B, 28 (2011) 2115—2122, https://doi.org/10.1364/JOSAB.28.002115
9. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, P. Bertrand. Phys. Rev. B, 64 (2001) 235422, https://doi.org/10.1103/PhysRevB.64.235422
10. E. Ferreiro-Vila, J. B. Gonzalez-Di'az, R. Fermento, M. U. Gonzalez, A. Garci'a-Marti'n, J. M. Garci'a-Marti'n, A. Cebollada, G. Armelles. Phys. Rev. B, 80 (2009) 125132, https://doi.org/10.1103/PhysRevB.80.125132
11. N. Bonod, R. Reinisch, E. Popov, M. Neviere. J. Opt. Soc. Am. B, 21, N 4 (2004) 791—797, https://doi.org/10.1364/JOSAB.21.000791
12. P. Varytis, P. A. Pantazopoulos, N. Stefanou. Phys. Rev. B, 93 (2016) 214423, https://doi.org/10.1103/PhysRevB.93.214423
13. R. K. Dani, H. Wang, S. H. Bossmann, G. Wysin, V. Chikan. J. Chem. Phys., 135 (2011) 224502, https://doi.org/10.1063/1.3665138
14. P. Varytis, N. Stefanou, A. Christofi, N. Papanikolaou. J. Opt. Soc. Am. B, 32, N 6 (2015) 1063—1069, https://doi.org/10.1364/JOSAB.32.001063
15. T. M. Chmereva, M. G. Kucherenko. J. Appl. Spectr., 86, N 4 (2019) 698—704, https://doi.org/10.1007/s10812-019-00881-7
16. B. Caballero, A. Garcia-Martin, J. C. Cuevas. Opt. Express, 23, N 17 (2015) 22238—22249, https://doi.org/10.1364/OE.23.022238
17. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. Yakovlev, A. K. Zvezdin, M. Bayer. Nature Nanotechnol., 6 (2011) 370—376, https://doi.org/10.1038/nnano.2011.54
18. А. К. Звездин, Н. Ф. Кубраков. ЖЭТФ, 116, № 1 (1999) 141—156
19. U. Pustogowa, W. Hubner, K. Н. Bennemann. Phys. Rev. В, 49 (1994) 10031
20. I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, T. Rasing, V. V. Temnov. ACS Photonics, 3 (2016) 179—183, https://doi.org/10.1021/acsphotonics.5b00504
21. V. V. Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, K. A. Nelson. J. Opt., 18 (2016) 093002
22. V. V. Temnov. Nat. Photon., 6 (2012) 728—736, https://doi.org/10.1038/nphoton.2012.220
23. Y. R. Shen. Annu. Rev. Phys. Chem., 40 (1989) 327—350
24. B. Jerome, Y. R. Shen. Phys. Rev. E, 48, N 6 (1993) 4556—4574, https://doi.org/10.1103/PhysRevE.48.4556
25. А. И. Ефимова, Л. А. Головань, П. К. Кашкаров, В. М. Сенявин, В. Ю. Тимошенко. Инфракрасная спектроскопия систем пониженной размерности, Санкт-Петербург, Лань (2016) 22—24
26. В. В. Климов. Наноплазмоника, Москва, Физматлит (2009) 60—63
27. R. Atkinson, W. R. Hendr. J. Mag. Soc. Jpn., 20, N S1 (1996) 291—296
28. D. Krause, C. W. Teplin, C. T. Rogers. J. Appl. Phys., 96, N 7 (2004) 3626—3634, https://doi.org/10.1063/1.1786341
29. S. Palomba, L. Novotny. Phys. Rev. Lett., 101 (2008) 056802, https://doi.org/10.1103/PhysRevLett.101.056802
Review
For citations:
Chmereva T.M., Kucherenko M.G. Nonlinear Reflection of Light from Planar Magnetoplasmonic Nanostructure. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):383-391. (In Russ.)