Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nonlinear Reflection of Light from Planar Magnetoplasmonic Nanostructure

Abstract

The nonlinear equatorial Kerr effect in a planar nanostructure consisting of ferromagnetic and plasmon layers and located between two optically transparent dielectrics is studied theoretically. Calculations are made of nonlinear surface polarizations of interfaces between media that are sources of the second harmonic (SH), angular dependences of the intensities of the reflected SH and magnetic contrasts for different thicknesses of the noble metal layer. It is shown that when a p-polarization wave is incident on the nanostructure, the SH intensity is maximal in the region of the plasmon resonance of the basic frequency on the metal surface adjacent to the lower dielectric. A significant effect of the thickness and location of the plasmon layer on both the SH intensity and the magnetic contrast has been established.

About the Authors

T. M. Chmereva
Orenburg State University
Russian Federation

Orenburg, 460018.



M. G. Kucherenko
Orenburg State University
Russian Federation

Orenburg, 460018.



References

1. А. Н. Калиш, В. И. Белотелов. ФТТ, 58, вып. 8 (2016) 1513—1521

2. A. K. Zvezdin, V. A. Kotov. Modern Magnetooptics and Magnetooptical Materials. IOP Publishing, Bristol, Philadelphia (1997) 28—30

3. G. Armelles, A. Cebollada, A. Garci'a-Marti'n, J. M. Garci'a-Marti'n, M. U. Gonzalez, J. B. Gonzalez-Di'az, E. Ferreiro-Vila, J. F. Torrado. J. Opt. A: Pure Appl. Opt., 11 (2009) 114023

4. J. F. Torrado, J. B. Gonzalez-Di'az, M. U. Gonzalez, A. Garci'a-Marti'n, G. Armelles. Opt. Express, 18 (2010) 15635—15642, https://doi.org/10.1364/OE.18.015635

5. I. S. Maksymov. Nanomaterials, 5 (2015) 577—613, https://doi.org/10.3390/nano5020577

6. G. Armelles, A. Cebollada, A. Garci'a-Marti'n, M. U. Gonzalez. Adv. Opt. Mater, 7 (2013) 10—35, https://doi.org/10.1002/adom.201200011

7. N. Passarelli, L. A. Perez, E. A. Coronado. ACS Nano, 8, N 10 (2014) 9723—9728, 10.1021/nn505145v

8. Y. Demidenko, D. Makarov, O. G. Schmidt, V. Lozovski. J. Opt. Soc. Am. B, 28 (2011) 2115—2122, https://doi.org/10.1364/JOSAB.28.002115

9. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, P. Bertrand. Phys. Rev. B, 64 (2001) 235422, https://doi.org/10.1103/PhysRevB.64.235422

10. E. Ferreiro-Vila, J. B. Gonzalez-Di'az, R. Fermento, M. U. Gonzalez, A. Garci'a-Marti'n, J. M. Garci'a-Marti'n, A. Cebollada, G. Armelles. Phys. Rev. B, 80 (2009) 125132, https://doi.org/10.1103/PhysRevB.80.125132

11. N. Bonod, R. Reinisch, E. Popov, M. Neviere. J. Opt. Soc. Am. B, 21, N 4 (2004) 791—797, https://doi.org/10.1364/JOSAB.21.000791

12. P. Varytis, P. A. Pantazopoulos, N. Stefanou. Phys. Rev. B, 93 (2016) 214423, https://doi.org/10.1103/PhysRevB.93.214423

13. R. K. Dani, H. Wang, S. H. Bossmann, G. Wysin, V. Chikan. J. Chem. Phys., 135 (2011) 224502, https://doi.org/10.1063/1.3665138

14. P. Varytis, N. Stefanou, A. Christofi, N. Papanikolaou. J. Opt. Soc. Am. B, 32, N 6 (2015) 1063—1069, https://doi.org/10.1364/JOSAB.32.001063

15. T. M. Chmereva, M. G. Kucherenko. J. Appl. Spectr., 86, N 4 (2019) 698—704, https://doi.org/10.1007/s10812-019-00881-7

16. B. Caballero, A. Garcia-Martin, J. C. Cuevas. Opt. Express, 23, N 17 (2015) 22238—22249, https://doi.org/10.1364/OE.23.022238

17. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. Yakovlev, A. K. Zvezdin, M. Bayer. Nature Nanotechnol., 6 (2011) 370—376, https://doi.org/10.1038/nnano.2011.54

18. А. К. Звездин, Н. Ф. Кубраков. ЖЭТФ, 116, № 1 (1999) 141—156

19. U. Pustogowa, W. Hubner, K. Н. Bennemann. Phys. Rev. В, 49 (1994) 10031

20. I. Razdolski, D. Makarov, O. G. Schmidt, A. Kirilyuk, T. Rasing, V. V. Temnov. ACS Photonics, 3 (2016) 179—183, https://doi.org/10.1021/acsphotonics.5b00504

21. V. V. Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, K. A. Nelson. J. Opt., 18 (2016) 093002

22. V. V. Temnov. Nat. Photon., 6 (2012) 728—736, https://doi.org/10.1038/nphoton.2012.220

23. Y. R. Shen. Annu. Rev. Phys. Chem., 40 (1989) 327—350

24. B. Jerome, Y. R. Shen. Phys. Rev. E, 48, N 6 (1993) 4556—4574, https://doi.org/10.1103/PhysRevE.48.4556

25. А. И. Ефимова, Л. А. Головань, П. К. Кашкаров, В. М. Сенявин, В. Ю. Тимошенко. Инфракрасная спектроскопия систем пониженной размерности, Санкт-Петербург, Лань (2016) 22—24

26. В. В. Климов. Наноплазмоника, Москва, Физматлит (2009) 60—63

27. R. Atkinson, W. R. Hendr. J. Mag. Soc. Jpn., 20, N S1 (1996) 291—296

28. D. Krause, C. W. Teplin, C. T. Rogers. J. Appl. Phys., 96, N 7 (2004) 3626—3634, https://doi.org/10.1063/1.1786341

29. S. Palomba, L. Novotny. Phys. Rev. Lett., 101 (2008) 056802, https://doi.org/10.1103/PhysRevLett.101.056802


Review

For citations:


Chmereva T.M., Kucherenko M.G. Nonlinear Reflection of Light from Planar Magnetoplasmonic Nanostructure. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):383-391. (In Russ.)

Views: 244


ISSN 0514-7506 (Print)