Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Evaluation of the Calibration-Free and Multivariate Method for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy

Abstract

The calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method is used to obtain the concentration of the constituents of samples because it overcomes the limitation of matrix-matched standards in the calibration curve method of quantification. However, there are often doubts that remain about the efficiency of the CF-LIBS method. Hence, in the present work, different certified reference materials (CRMs) of plants and soil were employed to check the capabilities of the CF-LIBS method. If the emission lines of an element are missing in the LIBS spectra, its contribution in the CF-LIBS result will be missing as well, which leads to incorrect quantification. Therefore, in order to overcome this problem in CF-LIBS, instead of only determining the elemental concentrations, an additional step to calculate the concentration ratio of all elements with respect to the concentration of a major element was added. The calculated concentration ratios for different elements are more accurate than the elemental concentration obtained by CF-LIBS. Along with the CF-LIBS method, the partial least square regression (PLSR) approach was also applied for the prediction of the concentration.

About the Authors

R. Kumar
Department of Physics, Chaudhary Mahadeo Prasad College at University of Allahabad
India

Prayagraj, 211002.



G. S. Maurya
Ultrafast Spectroscopy Lab., Department of Chemistry, Indian Institute of Technology Kanpur
India

Kanpur, 208016.



A. Devanathan
Fuel Chemistry Division, Bhabha Atomic Research Center
India

Mumbai, 400085.



A. K. Rai
Laser Spectroscopy Research Laboratory, Department of Physics at University of Allahabad
India

Prayagraj, 211002.



References

1. A. Kumar Pathak, R. Kumar, V. Kumar Singh, R. Agrawal, Sh. Rai, A. Kumar Rai, Appl. Spectrosc. Rev., 47, No. 1, 14-40 (2012).

2. V. Kumar Singh, A. Kumar Rai, Laser. Med. Sci., 26, No. 5, 673-687 (2011).

3. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, Trends Anal. Chem., 17, No. 8-9, 453-461 (1998).

4. D. A. Cremers, R. C. Chinni, Appl. Spectrosc. Rev., 44, No. 6, 457-506 (2009).

5. F.-Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, J. Air Waste Manage. Assoc., 52, 1307-1315 (2002).

6. D. W. Hahn, N. Omenetto, Appl. Spectrosc., 66, No. 4, 347-419 (2012).

7. J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, P. Paris, M. Laan, K. Piip, C. Orosnicu, C. P. Lungu, K. Sugiyama, Phys. Scr., 159, 014067 (2014).

8. C. Latkoczy, T. Ghislain, J. At. Anal. Spectrom., 21, 1152-1160 (2006).

9. B. G. Oztoprak, J. Gonzalez, J. Yoo, T. Gulecen, N. Mutlu, R. E. Russo, O. Gundogdu, A. Demire, Appl. Spectrosc., 66, No. 11, 1353-1361 (2012).

10. N. S. Rajurkar, M. M. Damame, J. Radioanal. Nucl. Chem., 219, 77-80 (1997).

11. C. G. Ryan, Int. J. Imag. Syst. Technol., 11, 219-230 (2000).

12. J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Anal. Chim. Acta, 514, 115-124 (2004).

13. N. Civici, Sh. Gjongecaj, F. Stamati, T. Dilo, E. Pavlidou, E. K. Polychroniadis, Z. Smit, Nucl. Instrum. Method. Phys. Res. B, 258, 414-420 (2007).

14. A. Ciucci, M. Corsi, V. Palleschi, V. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc., 53, No. 8, 960-964 (1999).

15. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Appl. Opt., 42, No. 30, 6133-6137 (2003).

16. R. Gaudiuso, M. Dell'Aglio, O. de Pascale, G. S. Senesi, Sensors, 10, 7434-7468 (2010).

17. J. A. Aguilera, C. Aragon, G. Cristoforetti, E. Tognoni, Spectrochim. Acta B, 64, 685-689 (2009).

18. R. Kumar, A. K. Rai, Environ. Monit. Assess., 185, 171-180 (2013)

19. Sh. Awasthi, R. Kumar, A. Devanathan, R. Acharya, A. K. Rai, Anal. Chem. Res., 12, 10-16 (2017).

20. R. Aruga, D. Gastaldi, G. Negro, G. Ostacoli, Anal. Chim. Acta, 310, 15-25 (1995).

21. J. L. Gottfried, R. S. Harmon Jr., F. C. De Lucia, A. W. Miziolek, Spectrochim. Acta B, 64, 1009-1019 (2009).

22. M. Farrokhniaa, S. Karimib, Anal. Chim. Acta, 902, 70-81 (2016).

23. A. Sarkar, V. Karki, S. K. Aggarwal, G. S. Maurya, R. Kumar, A. K. Rai, X. Mao, R. E. Russo, Spectro-chim. Acta B, 108, 8-14 (2015).

24. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

25. J. P. Singh, S. N. Thakur, Laser Induced Breakdown Spectroscopy, Elsevier, Amsterdam (2007).

26. A. H. Galmed, M. A. Harith, Appl. Phys. B, 91, 651-660 (2008).

27. G. S. Maurya, A. Jyotsana, R. Kumar, A. Kumar, A. K. Rai, Phys. Scr., 89, 075601 (2014).

28. G. S. Maurya, P. K. Tiwari, R. Kumar, R. K. Singh, A. K. Rai, In: Laser Induced Breakdown Spectroscopy, Eds. J. P. Singh, S. N. Thakur, Elsevier, 385-399 (2020).


Review

For citations:


Kumar R., Maurya G.S., Devanathan A., Rai A.K. Evaluation of the Calibration-Free and Multivariate Method for Quantitative Analysis in Laser-Induced Breakdown Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):462-470.

Views: 248


ISSN 0514-7506 (Print)