Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The Crystal Structure, Spectral, and Density Functional Theory Studies of [3-(3-Bromophenyl)-cis-4,5-Dihydroisoxazole-4,5-Diyl]bis(Methylene)Diacetate

Abstract

The crystal structure of [3-(3-bromophenyl)-cis-4,5-dihydroisoxazole-4,5-diyl]bis(methylene)diacetate (BDBD) was determined using X-ray diffraction data. Hirschfeld surface and fingerprint plots were used to locate and analyze the molecular surface. The optimized molecular structures, frontier molecular orbitals, quantum chemical parameters, and NMR chemical shifts of the investigated compound were calculated with DFT at the B3LYP/6-311G(d,p) level of theory. The experimental NMR of the studied compound was measured in deuterochloroform (CDCl3) solvent, employing tetramethylsilane as an internal standard. It was established that the experimental and simulated 1H and 13C NMR spectra were in good agreement. Vibrational spectrum analysis was carried out by FT-IR spectroscopy in the range 400-4000 cm-1 for the title molecule. The vibrationalfrequencies of the investigated compound were calculated with DFT at the B3LYP/6-311G(d,p) level of the theory. The wavenumbers received complete vibrational assignments based on their potential energy distribution. The experimental and simulated FT-IR spectra were in good agreement.

About the Authors

Y. S. Kara
Kocaeli University
Turkey

41380, Umuttepe, Kocaeli.



A. Eşme
Kocaeli University
Turkey

41380, Umuttepe, Kocaeli.



S. G. Sagdinc
Kocaeli University
Turkey

41380, Umuttepe, Kocaeli.



References

1. I. Zadrozna, J. Kurkowska, H. Kruszewska, I. Makuch, Farmaco, 55, 499-501 (2000).

2. M. Shailaja, A. Manjula, B. V. Rao, Indian J. Chem., 50B, 214-222 (2011).

3. J. T. Pulkkinen, P. Honkakoski, M. Perakyla, I. Berczi, R. Laatikainen, J. Med. Chem., 51, 3562-3571 (2008).

4. C. T. Molina, A. A. de Palermo, Heterocycl. Commun., 9, 535-538 (2011).

5. P. Mondal, S. Jana, A. Balaji, R. Ramakrishna, K. L. Kanthal, J. Young Pharm., 4, 38-41 (2012).

6. Y. S. Kara, Spectrochim. Acta A, 151, 723-730 (2015).

7. G. M. Sheldrick, Acta Crystallogr. C: Struct. Chem., 71, 3-8 (2015).

8. G. M. Sheldrick, Acta Crystallogr. A, 64, 112-122 (2008).

9. Bruker, SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA (2006).

10. A. L. Spek, PLATON-a Multipurpose Crystallographic Tool, Utrecht University (2005).

11. L. Farrugia, J. Appl. Crystallogr., 45, 849-854 (2012).

12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 42, 339-341 (2009).

13. Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009.

14. T. Keith, J. Millam, GaussView, Version 5.0.9, Semichem. Inc., Shawnee Mission, KS (2009).

15. A. D. Becke, J. Chem. Phys., 98, 5648-5652 (1993).

16. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785-789 (1988).

17. E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys., 107, 3032-3041 (1997).

18. N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem., 29, 839 (2008).

19. M. N. Arshad, Al-Anood M. Al-Dies, A. M. Asiri, M. Khalid, A. S. Birinji, K. A. Al-Amry, A. A. C. Braga, J. Mol. Struct., 1141, 142-156 (2017).

20. D. E. Taylor, R. C. Sausa, J. Mol. Struct., 1162, 45-53 (2018).

21. N. Dege, N. Senyuz, H. Bati, N. Gunay, D. Avci, O. Tamer, Y. Atalay, Spectrochim. Acta A, 120, 323-331 (2014).

22. H. L. Hirshfeld, Theor. Chim. Acta, 44, 129-138 (1977).

23. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer, The University of Western Australia (2017).

24. S. H. Sumrra, A. H. Atif, M.N.Zafar, J. Mol. Struct., 1166, 110-120 (2018).

25. N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem., 29, 839 (2008).

26. S. M. Hiremath, A. S. Patil, C. S. Hiremath, M. Basangoudac, S. S. Khemalapure, N. R. Patil, S. B. Radder, S. J. Armakovi, S. Armakovi, J. Mol. Struct., 1178, 1-17 (2019).

27. C. Zhan, J. A. Nichols, D. A. Dixon, J. Phys. Chem. A, 107, 4184-4195 (2003).

28. P. Govindasamy, S. Gunasekaran, Spectrochim. Acta A, 149, 800-811 (2015).

29. A. Lesar, I. Milosev, Chem. Phys. Lett., 483, 198-203 (2009).

30. C. Bustos-Brito, V. J. Vazquez-Heredia, F. Calzada, L. Yepez-Mulia, J. S. Calderon, S. Hernandez-Ortega, B. Esquivel, N. Garda-Hernandez, L. Quijano,Molecules, 21, 1132-1144 (2016).

31. B. Miroslaw, D. Babyuk, A. Lapczuk-Krygier, A. Kacka-Zych, O. M. Demchuk, R. Jasin'ski, Monatsh. Chem. Chem. Mon., 149, 1877-1884 (2018).

32. A. Esme, S. G. Sagdinc, J. Mol. Struct., 1048, 185-195 (2013).

33. G. Varsanyi, L. Lang, M.A. Kovner, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Academiai Kiado, Budapest, 44, 22 (1973).

34. S. Muthu, J. U. Maheswari, Spectrochim. Acta A, 92, 154-163 (2012).

35. N. B. Colthup, L. H. Daly, S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1975).

36. M. Diem, Introduction to Modern Vibrational Spectroscopy, Wiley, New York (1993).

37. D. Sajan, J. Binoy, B. Pradeep, K. V. Krishnan, V. B. Kartha, I. H. Joe, V. S. Jayakumar, Spectrochim. Acta A, 60, 173-180 (2004).

38. D. N. Sathyanarayana, Vibrational Spectroscopy - Theory and Applications, New Age International (P) Ltd. Publishers, New Delhi (2004).

39. M. E. D. Lestard, M. E. Tuttolomondo, D. A. Wann, H. E. Robertson, D. W. H. Rankin, A. B. Altabef, J. Raman Spectrosc., 41, 1357-1368 (2010).

40. N. Subramania, N. Sundaraganesan, J. Jayabharathi, Spectrochim. Acta A, 76, 259-269 (2010).

41. P. Grunanger, P. V. Finzi, The Chemistry of Heterocyclic Compounds, Isoxazoles, John Wiley & Sons (1991).

42. S. Eryilmaz, M. Gul, E. inkaya, M. Ta§, J. Mol. Struct., 1108, 209-222 (2016).

43. R. Y. Jin, X. H. Sun, Y. F. Liu, W. Long, B. Chen, S. Q. Shen, H. X. Ma, Spectrochim. Acta A, 152, 226-232 (2016).


Review

For citations:


Kara Y.S., Eşme A., Sagdinc S.G. The Crystal Structure, Spectral, and Density Functional Theory Studies of [3-(3-Bromophenyl)-cis-4,5-Dihydroisoxazole-4,5-Diyl]bis(Methylene)Diacetate. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):501(1)-501(12).

Views: 264


ISSN 0514-7506 (Print)