Predicting Hyperglycemia Using NIR Spectrum of Spent Fluid in Hemodialysis Patients
Abstract
We aimed to assess the near infrared spectroscopy as a method for non-invasive on-line detection of hyperglycemia from spent hemodialysis effluent. We used partial least squares regression and several machine learning algorithms: random forest (RF), logistic regression, K-nearest neighbor (KNN), support vector machine (SVM), decision tree classifier, and Gaussian naive Bayes (NB) to classify normoglycemia from hyperglycemia. These classifier methods were used on the same dataset and evaluated by the area under the curve. The serum glucose levels were presented in the form of a binomial variable, where 0 indicated a glucose level within reference range and 1 a glucose level beyond the normal limit. For this reason, the methods of machine learning were applied as more specific methods of classification. RF and SVM have shown the best classification accuracy in predicting hyperglycemia, while decision tree and NB showed average accuracy.
About the Authors
V. MatovićSerbia
11120 Belgrade.
J. Trbojević-Stanković
Serbia
11120 Belgrade; 11000 Belgrade.
L. Matija
Serbia
11120 Belgrade.
D. Sarac
Serbia
11120 Belgrade.
A. Vasić-Milovanović
Serbia
11120 Belgrade.
A. Petrović
Serbia
11120 Belgrade.
References
1. S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Diabetes Care, 27, 1047-1053 (2004).
2. T. H. Hostetter, N. Engl. J. Med., 351, No. 13, 1344-1346 (2004).
3. D. M. Nathan, S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand, C. Siebert, N. Engl. J. Med., 329, 977-986 (1993).
4. J. Pirart, Diabetes Care, 1, 168-188 (1978).
5. C. V. Eddy, M. A. Arnold, Clin. Chem., 47, 1279-1286 (2001).
6. F. M. Parsons, W. K. Stewart, In: Replacement of Renal Function by Dialysis, Springer, 148-170 (1983).
7. R. Sam, M. Vaseemuddin, W. H. Leong, B. E. Rogers, C. M. Kjellstrand, T. S. Ing, Hemodial. Int., 10, 15-28 (2006), doi:10.1111/j.1542-4758.2006.01170.x.
8. N. Kaiser, Method for Determining the Contents of Metabolic Products in the Blood, U. S. Patent 4, 169, 676, iss. October 2 (1979).
9. T. Koschinsky, L. Heinemann, Diabetes. Metab. Res. Rev., 17, 113-123 (2001).
10. American Diabetes Association Clinical Practice Recommendations, American Diabetes Association (1997).
11. T. Nakao, M. Inaba, M. Abe, K. Kaizu, K. Shima, T. Babazono, T. Tomo, H. Hirakata, T. Akizawa, Ther. Apher. Dial., 19, 40-66 (2015).
12. M. Abe, K. Kalantar-Zadeh, Nat. Rev. Nephrol., 11, 302 (2015).
13. M. A. Arnold, Curr. Opin. Biotechnol., 7, 46-49 (1996).
14. J. Garcia-Guzman, N. Gonzalez-Viveros, H. H. Cerecedo-Nunez, In: Emerging Challenges for Experimental Mechanics in Energy and Environmental Appl. Proc. 5th Int. Symp. Optics in Industry (ISEM-SOI), 2015, Springer, 55-63 (2017).
15. K. E. Kramer, G. W. Small, Vib. Spectrosc., 43, 440-446 (2007).
16. A. K. Amerov, J. Chen, G. W. Small, M. A. Arnold, Anal. Chem., 77, 4587-4594 (2005).
17. Q.-B. Li, L.-N. Li, G.-J. Zhang, Infrared Phys. Technol., 53, 410-417 (2010).
18. M. A. Arnold, G. W. Small, Anal. Chem., 77, 5429-5439 (2005).
19. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, S. L. Monfre, Clin. Chem., 45, 1651-1658 (1999).
20. K. Maruo, M. Tsurugi, J. Chin, T. Ota, H. Arimoto, Y. Yamada, M. Tamura, M. Ishii, Y. Ozaki, IEEE J. Sel. Top. Quantum Electron., 9, 322-330 (2003).
21. C. Araujo-Andrade, F. Ruiz, J. R. Martinez-Mendoza, H. Terrones, AIP Conf. Proc, 234-239 (2004).
22. R. Liu, W. Chen, Y. Chen, K. Xu, Opt. Diagnostics Sens. VIII, Int. Soc. Opt. Photon., 68630Q (2008).
23. K. Xu, Q. Qiu, J. Jiang, X. Yang, Opt. Lasers Eng., 43, 1096-1106 (2005).
24. C. S. Soh, X. Zhang, J. Chen, P. Raveendran, P. H. Soh, J. H. Yeo, Adv. Biomed. Clin. Diagnostic Syst. VI, Int. Soc. Opt. Photon., 68480B (2008).
25. E. Guevara, F. J. Gonzalez, Rev. Mex. Fis., 56, 430-434 (2010).
26. D. M. Haaland, E. V. Thomas, Anal. Chem., 60, 1193-1220 (1988).
27. P. Zuo, Y. Li, J. Ma, S. Ma, ICNN&B'05. Int. Conf., IEEE, 1350-1353 (2005).
28. K. Y. Chan, S.-H. Ling, T. S. Dillon, H. T. Nguyen, Expert Syst. Appl., 38, 9799-9808 (2011).
29. S. Malik, R. Khadgawat, S. Anand, S. Gupta, Springerplus, 5, No. 1, 1-12 (2016).
30. B. Sudharsan, M. Peeples, M. Shomali, J. Diabetes Sci. Technol., 9, 86-90 (2014).
31. E. I. Georga, V. C. Protopappas, D. Ardigo, D. Polyzos, D. I. Fotiadis, Diabetes Technol. Ther., 15, 634-643 (2013).
32. S. DuBrava, J. Mardekian, A. Sadosky, E. J. Bienen, B. Parsons, M. Hopps, J. Markman, Pain Med., 18, 107-115 (2017).
33. A. Roth, F. Dornuf, O. Klein, D. Schneditz, H. Hafner-GieBauf, W. Mantele, Anal. Bioanal. Chem., 403, 391-399 (2012).
Review
For citations:
Matović V., Trbojević-Stanković J., Matija L., Sarac D., Vasić-Milovanović A., Petrović A. Predicting Hyperglycemia Using NIR Spectrum of Spent Fluid in Hemodialysis Patients. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):504(1)-504(6).