Investigation of the Physical Properties of Eucalyptus and Pinus halepensis Essential Oils Using Dielectric Spectroscopy and Gas Chromatography-Mass Spectrometry
Abstract
The gas chromatography-mass spectrometry and dielectric spectroscopy techniques are used to characterize the thermodynamic properties of the essential oils extracted from two main Mediterranean wildland fuels, namely eucalyptus leaves and Pinus halepensis needles. These oils are assumed to be representative of the fuels organic volatile components that exhibit different fire behaviors. The relaxation frequencies determined from the peak of the imaginary permittivity spectra using the Havriliak-Negami empirical law revealed the Arrhenius dependence on temperature. Two activation energies are obtained: the first is around 4.13 kJ /mol for both species, and the second activation energy is around 1.27 kJ/mol for the Pinus halepensis essential oil and around 2.15 kJ/mol for the eucalyptus essential oil. Qualitative and quantitative composition differences are observed with GC-MS measurements for eucalyptus leaves and Pinus halepensis needles essential oils.
About the Authors
O. HarrouzAlgeria
Ouargla.
F. Frenzel
Germany
04103 Leipzig.
O. Mosbah
Algeria
S. M. Terrah
Algeria
F. Z. Sabi
Algeria
A. Sahila
Algeria
N. Zekri
Algeria
F. Kremer
Germany
04103 Leipzig.
References
1. J. H. Balbi, F. Morandini, X. Silvani, J. B. Filippi, F. Rinieri, Combust. Flame, 156, 2217-2230 (2009).
2. K. Chetehouna, T. Barboni, I. Zarguili, E. Leoni, A. Simeoni, A. C. Fernandez-Pello, Combust. Sci. Tech-nol, 181, No. 10, 1273-1288 (2009).
3. L. Courty, K. Chetehouna, J. P. Garo, D. X. Viegas, In: A volatile Organic Compounds Flammability Approach for Accelerating Forest Fires, Modelling, Monitoring and Management of Forest Fires II, Eds. Perona & Brebbia, WIT Transactions on Ecology and the Environment, 137 (2010).
4. G. A. Alessio, J. Penuelas, J. Llusia, R. Ogaya, M. Estiarte, De Lillis, Int. J. Wildland Fire, 17, No. 2, 274-286 (2008), doi:10.1071/WF07038.
5. G. Massari, A. Leopaldi, Plant Biosyst., 132 (1998).
6. L. Catoire, V. Naudet, Proc. Safety Prog., 24, 130-137 (2005)
7. E. Von Rudloff, Can. J., 53, 2978-2982 (1975).
8. J. P. Greenberg, H. Friedli, A. B. Guenther, D. Hanson, P. Harley, T. Karl, Atmos. Chem. Phys, 6, 81-91 (2006).
9. A. Koedam, In: Capillary Gas Chromatography in Essential Oils Analysis, Eds. P. Sandra, C. Bicchi, Huethig, Heidelberg (1987).
10. S. D. Romano, P. A. Sorichetti, Dielectric Relaxation Spectroscopy in Biodiesel Production and Characterization, Springer Verlag, London (2011).
11. J. Llusia, J. Penuelas, Am. J. Bot., 87, 133-140 (2000).
12. C. S. White, J. Chem. Ecol., 20, 1381-1406 (1994), doi:10.1007/BF02059813.
13. M. K. Owens, C. D. Lin, C. A. Taylor, Jr., S. G. Whisenant, J. Chem. Ecol, 24, No. 12, 2115-2129 (1998).
14. J. Tranchant, Manuel Pratique de Chromatographie en Phase Gazeuse, Masson et Cie, Paris (1982).
15. D. Alexandrian, E. Rigolot, Sensibilite du pin d'Alep a l'incendie, Foret mediterraneenne, 3 (1992).
16. www.foret-mediterraneenne.org/fr/catalogue (2008).
17. Alvarez, M. Gracia, J. Vayreda, J. Retana, ForestEcol. Manage., 270 (2012).
18. M. Hausler, J. P. Nunes, P. Soares, J. M. Sanchez, J. M. N. Silva, T. Warneke, J. J. Keizer, J. M. C. Pereira, Int. J. Remote Sens, 39, 6499-6524 (2018).
19. D. L. Pavida, G. M. Lampman, G. S. Kriz, In: Introduction to Organic Laboratory Techniques, Ed. W. B. Sauders, Philadelphia, USA (1976).
20. J. F. Clevenger, American Perfumer & Essential Oil Review, 467-503 (1928).
21. M. Gorunovic, N. Mimica-Dukic, G. Kite, D. Stosic, Pharmazie, 47, H8 (1992).
22. K. Hannus, G. Pensar, Phytochemistry, 13, 2563-2566 (1974).
23. E. Bocchio, Parfums, Cosmetiques, Aromes, 63, 61-62 (1985).
24. J. F. Clevenger, J. Ann. Pharm. Assoc., 17, No. 4, 346-351 (1928).
25. Novocontrol Technologies GmbH & Co. KG, POT/GAL 15V 10A Electrochemical Impedance Potentiostat Galvanostat Test Interface for Alpha-A Analyzer, User's manual.
26. Novocontrol Technologies GmbH & Co. KG, Novotherm-HT High Temperature Control Systems 650, 800, 1000, 1200, and 1400, User's manual.
27. S. Havriliak, Negami, Polymer, 8, 161 (1967).
28. J. Ross, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Application, Wiley (2005).
29. A. Schonhals, F. Kremer, E. Schlosser, Phys. Rev. Lett, 67, 999 (1991).
30. F. Kremer, In: Broadland Dielectric Spectroscopy, Ed. A. Schonhals, Springer, Heidelberg (2002).
31. P. Henning, A. Steinborn, W. Engewald, Chromatographia, 3, 689-694 (1994).
32. P. Arpino, A. Prevot, J. Serpinet, J. Tranchant, A. Vergnol, P. Witier, In: Manuel Pratique de Chromatographie en Phase Gazeuse, Ed. Masson, Paris (1995).
33. G. Castello, J. Chromatogr. A, 842, 51-64(1999).
34. A. J. Handley, E. R. Adlard, Gas Chromatographic Techniques and Application, Sheffield Academic, London, 12, Thermo Fisher Scientific (2011).
35. G. A. Eiceman, In: Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation, Ed. R. A. Meyers, Wiley, Chichester (2000).
36. F. G. Kitson, B. S. Larsen, C. N. McEwen, Gas Chromatography and Mass Spectrometry: a Practical Guide, Academic Press, Boston (1996)
37. W. M. A. Niessen, Current Practice of Gas Chromatography-Mass Spectrometry, Marcel Dekker, New York (2001).
38. F. Z. Sabi, Fire Safety J, 119, 103257 (2021), doi: 10.1016/j.firesaf.2020.103257.
Review
For citations:
Harrouz O., Frenzel F., Mosbah O., Terrah S.M., Sabi F.Z., Sahila A., Zekri N., Kremer F. Investigation of the Physical Properties of Eucalyptus and Pinus halepensis Essential Oils Using Dielectric Spectroscopy and Gas Chromatography-Mass Spectrometry. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):505(1)-505(6).