Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Simulation of a Blind Hyperspectral-Unmixing Algorithm Incorporating Spatial Correlation and Spectral Similarity

Abstract

For hyperspectral unmixing, a multi-scale spatial regularization method based on a modified image segmentation algorithm to generate super-pixels is proposed in which the super-pixels are used to extract contextual information from spatial correlations and spectral similarity in hyperspectral images (HSIs). The unmixing problem is decomposed into two simple unmixing subproblems regarding the approximate super-pixels and the original pixels. The unmixing results of these two subproblems have spatial-correlation constraints. Introducing a novel regularization term to constrain the abundance matrix to promote the homogeneous abundances helps in making effective use of the spatial correlations and spectral similarity of the abundances from HSIs. Experimental results obtained from synthetic data demonstrate that the proposed algorithm yields an accuracy greater than other conventional methods.

About the Authors

Q. Li
Precision Opto-Mechatronics Technology Key Laboratory of Education Ministry, School of Instrumentation and Optoelectronic Engineering at BeiHang University
China

Beijing, 100191.



X. Miao
Precision Opto-Mechatronics Technology Key Laboratory of Education Ministry, School of Instrumentation and Optoelectronic Engineering at BeiHang University
China

Beijing, 100191.



References

1. P. Ghamisi, N. Yokoya, L. Jun, W. Liao, S. Liu, Z. Plaza, B. Rasti, A. Plaza, IEEE Geosci. Remote Sens. Mag., 5, No. 4, 37-78 (2017).

2. Q. Li, Q. Wang, S. Shi, J. Appl. Spectrosc., 86, No. 3, 479-485 (2019).

3. H. G. Schulze, S. O. Konorov, J. M. Piret, M. W. Blades, R. F. B. Turner, Appl. Spectrosc., 7, No. 12, 2681-2691 (2017).

4. Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, J. Zang, IEEE Trans. Image Process., 20, No. 4, 1112-1125 (2011).

5. Y. Qian, S. Jia, J. Zhou, A. Robles-Kelly, IEEE Trans. Geosci. Remote Sens., 49, No. 11, 4282-4297 (2011).

6. W. He, H. Zhang, L. Zhang, IEEE Trans. Geosci. Remote Sens., 55, No. 7, 3909-3921 (2017).

7. M.-D. Iordache, J. M. Bioucas-Dias, A. Plaza, IEEE Trans. Geosci. Remote Sens., 50, No. 11, 4484-4502 (2012).

8. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, IEEE Trans. Pattern Anal. Mach. Intel, 34, No. 11, 2274-2282 (2012).

9. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, C. Richard, IEEE Geosci. Remote Sens. Lett., 16, No. 4, 598-602 (2019).

10. X. Wang, Y. Zhong, L. Zhang, Y. Xu, IEEE Trans. Geosci. Remote Sens., 55, No. 11, 6287-6304 (2017).

11. J. Li, X. Li, L. Zhao, J. Appl. Remote Sens., 10, 1-18 (2016).

12. D. C. Heinz, C.-I. Chang, IEEE Trans. Geosci. Remote Sens., 39, No. 3, 529-545 (2001).

13. J. M. P. Nascimento, J. M. Bioucas-Dias, IEEE Trans. Geosci. Remote Sens., 43, No. 4, 898-910 (2005).

14. E. M. T. Hendrix, I. Garcia, J. Plaza, G. Martin, A. Plaza, IEEE Trans. Geosci. Remote Sens., 50, No. 7, 2744-2757 (2011).


Review

For citations:


Li Q., Miao X. Simulation of a Blind Hyperspectral-Unmixing Algorithm Incorporating Spatial Correlation and Spectral Similarity. Zhurnal Prikladnoii Spektroskopii. 2021;88(3):508(1)-508(7).

Views: 187


ISSN 0514-7506 (Print)