Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

LASER-INDUCED BREAKDOWN SPECTROSCOPY AND PLASMA CHARACTERIZATION GENERATED BY LONG-PULSE LASER ON SOIL SAMPLES

Abstract

The plasma is generated by focusing a long-pulse (80 μs) Nd:YAG laser on chromium-doped soil samples. The calibration curves are drawn using the intensity ratio of the chromium spectral line at 425.435 nm with the iron spectral line (425.079 nm) as reference. The regression coefficient of the calibration curve is 0.993, and the limit of detection is 16 mg/kg, which is 19% less than that for the case of a Q-switched laser In the method of long-pulse laser-induced breakdown spectroscopy, the laser-induced plasma had a temperature of 15795.907 K and an electron density of 2.988´1017 cm-3, which exceeded the corresponding plasma parameters of the Q-switched laser-induced breakdown spectroscopy by 75% and 24% respectively.

About the Authors

S. . Xu
College of Science, Shenyang Ligong University
Russian Federation


W. . Duan
College of Science, Shenyang Ligong University
Russian Federation


R. . Ning
College of Science, Shenyang Ligong University
Russian Federation


Q. . Li
College of Science, Shenyang Ligong University
Russian Federation


R. . Jiang
College of Science, Shenyang Ligong University
Russian Federation


References

1. M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, O. S. B. Al-Amoudi, Opt. Laser. Technol., 44, 566-571 (2012).

2. C. Aragon, J. A. Aguilera, F. Penalba, J. Appl. Spectrosc., 53, 1259-1264 (1999).

3. C. Aragon, J. Bengoechea, J. Aguilera, Spectrochim. Acta B, 56, 619-628 (2001).

4. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, Geoderma, 106, 45-62 (2002).

5. Z. M. Madhavi, L. Nicole, A. Nicolas, H. Ronny, E. Michael, D. W. Stan, A. V. Arpad, Spectrochim. Acta B, 62, 1426-1432 (2007).

6. K. Y. Yamamoto, D. A. Cremers, L. E. Foster, M. P. Davies, P. D. Harris, Appl. Spectrosc., 59, 1082-1096 (2005).

7. F. C. Alvira, L. Ponce, M. Arronte, G. M. Bilmes, J. Phys., 247, 1-6 (2011).

8. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, Y. F. Lu, Opt. Express, 19, 14067-14075 (2011).

9. R. Babar, A. Rizwan, A. Raheel, M. A. Baig, Phys. Plasmas, 18, 1-7(1994).

10. S. N. Xu, W. Z. Duan, N. R. Bo, Q. Li, A. Zhuo, R. Jiang, Spectrosc. Spectral Anal., 36, 1175-1179 (2015).

11. Environmental Quality Standard For Soil, GB 15618 (1995).

12. Plasma Emission Spectrum Analyze, Beijing, Chemical Industry Press (2005).

13. S. Mohamad, C. Paolo. Appl. Spectrosc., 49, 499-507 (1995).

14. Emission Spectral Analysis, Beijing, Metallurgical Industrial Press (1975).

15. http://www.physics.nist.gov/PhysRefData/ASD/lines_form.html, NIST, National Institute of Standards and Technology for the United States of America.

16. Plasma Spectroscopy, McGraw-Hill, New York, 483-521 (1964).


Review

For citations:


Xu S., Duan W., Ning R., Li Q., Jiang R. LASER-INDUCED BREAKDOWN SPECTROSCOPY AND PLASMA CHARACTERIZATION GENERATED BY LONG-PULSE LASER ON SOIL SAMPLES. Zhurnal Prikladnoii Spektroskopii. 2017;84(1):44-48. (In Russ.)

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)