Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

SUCCESSIVE PROJECTIONS ALGORITHM-MULTIVARIABLE LINEAR REGRESSION (SPA-MLR) CLASSIFIER FOR THE DETECTION OF CONTAMINANTS ON CHICKEN CARCASSES IN HYPERSPECTRAL IMAGES

Abstract

During slaughtering and further processing, chicken carcasses are inevitably contaminated by microbial pathogen contaminants. Due to food safety concerns, many countries implement a zero-tolerance policy that forbids the placement of visibly contaminated carcasses in ice-water chiller tanks during processing. Manual detection of contaminants is labor consuming and imprecise. Here, a successive projections algorithm (SPA)-multivariable linear regression (MLR) classifier based on an optimal performance threshold was developed for automatic detection of contaminants on chicken carcasses. Hyperspectral images were obtained using a hyperspectral imaging system. A regression model of the classifier was established by MLR based on twelve characteristic wavelengths (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670, and 689 nm) selected by SPA, and the optimal threshold T = 1 was obtained from the receiver operating characteristic (ROC) analysis. The SPA-MLR classifier provided the best detection results when compared with the SPA-partial least squares (PLS) regression classifier and the SPA-least squares supported vector machine (LS-SVM) classifier. The true positive rate (TPR) of 100% and the false positive rate (FPR) of 0.392% indicate that the SPA-MLR classifier can utilize spatial and spectral information to effectively detect contaminants on chicken carcasses.

About the Authors

W. . Wu
College of Engineering, Nanjing Agricultural University
Russian Federation


G. Y. Chen
College of Engineering, Nanjing Agricultural University
Russian Federation


R. . Kang
College of Engineering, Nanjing Agricultural University
Russian Federation


J. C. Xia
Changzhou Textile Garment Institute of Technology
Russian Federation


Y. P. Huang
College of Engineering, Nanjing Agricultural University
Russian Federation


K. J. Chen
College of Engineering, Nanjing Agricultural University
Russian Federation


References

1. http://www.consumerreports.org/cro/magazine/2014/02/the-high-cost-of-cheap-chicken/index.htm (2014).

2. F. Lawrence, A. Wasley, and R. Ciorniciuc, The Guardian (2014); http://www.theguardian.com/world/2014/jul/23/-sp-revealed-dirty-secret-uk-poultry-industry-chicken-campylobacter.

3. USDA, Final rule.9CFR part 304. Fed. Regist., 61, 38805-38989 (1996).

4. W. R. Windham, D. P. Smith, B. Park, K. C. Lawrence, P. W. Feldner, Trans. ASAE, 46, 1733-1738 (2003).

5. Y. R. Chen, W. R. Hruschka, H. Early, J. Food Process Eng., 23, 89-99 (2000).

6. Z. Xiong, D.W. Sun, A. Xie, Z. Han, L. Wang, Food Chem., 175, 417-422 (2015).

7. S. A. Hawkins, B. Bowker, H. Zhuang, G. Gamble, R. Holser, J. Food Res., 3, 57-65 (2014).

8. D. Alexandrakis, G. Downey, A. G. M. Scannell, Food Bioprocess Tech., 5, 338-347 (2012).

9. B. Park, K. C. Lawrence, W. R. Windham, R. J. Buhr, Trans. ASAE, 45, 2017-2026 (2002).

10. B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, J. Food Eng., 75, 340-348 (2006).

11. B. Park, S.-C. Yoon, W. R. Windham, K. C. Lawrence, M. S. Kim, K. Chao, Sens. Instrum. Food Qual. Saf., 5, 25-32 (2011).

12. W. R. Windham, D. P. Smith, M. E. Berrang, K. C. Lawrence, P. W. Feldner, Int. J. Poult. Sci., 4, 657-662 (2005).

13. W. Wu, G. Y. Chen, J. C. Xia, C.W. Ye, K. J. Chen, Spectrosc. Spect. Anal., 34, 3363-3367 (2014).

14. S. C. Yoon, B. Park, K. C. Lawrence, W. R. Windham, G. W.Heitschmidt, Comput. Electron. Agric., 79, 159-168 (2011).

15. G. W. Heitschmidt, B. Park, K.C. Lawrence, W. R. Windham, D. P. Smith, Trans. ASABE, 50, 1427-1432 (2007).

16. S. Kang, K. Lee, J. Son, M. S. Kim, Proc. Food Sci., 1, 953-959 (2011).

17. K. C. Lawrence, W. R. Windham, B. Park, R. J. Buhr, J. Near Infrared Spectrosc., 11, 269-281 (2003).

18. C. D. Everard, M. S. Kim, H. Lee, J. Food Eng., 143, 139-145 (2014).

19. M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani, Chemometr. Intell. Lab. Syst., 57, 65-73 (2001).

20. R. K. H. Galvão, M. C. U. Araújo, W. D. Fragoso, E. C. Silva, G. E. José, S. F. C. Soares, H. M. Paiva, Chemometr. Intell. Lab. Syst., 92, 83-91 (2008).

21. C. E. Metz, Semin. Nucl. Med., 8, 283-298 (1978).

22. L. D. Stefano, A. Bulgarelli, Int. Conf. Image Anal. Process., 322-327 (1999).


Review

For citations:


Wu W., Chen G.Y., Kang R., Xia J.C., Huang Y.P., Chen K.J. SUCCESSIVE PROJECTIONS ALGORITHM-MULTIVARIABLE LINEAR REGRESSION (SPA-MLR) CLASSIFIER FOR THE DETECTION OF CONTAMINANTS ON CHICKEN CARCASSES IN HYPERSPECTRAL IMAGES. Zhurnal Prikladnoii Spektroskopii. 2017;84(3):510(1)-510(7). (In Russ.)

Views: 227


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)