Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

A SEMI-EMPIRICAL FORMULA OF THE DEPENDENCE OF THE FLUORESCENCE INTENSITY OF NAPHTHALENE ON TEMPERATURE AND THE OXYGEN CONCENTRATION

Abstract

Two-ring aromatics, such as naphthalene, are important fluorescent components of kerosene in the planar laser induced fluorescent (PLIF) technique. Quantifying measurements of kerosene vapor concentrations by PLIF require a prior knowledge of the fluorescence intensity of naphthalene over a wide temperature and oxygen concentration range. To promote the application of PLIF, a semi-empirical formula based on the collision theory and experimental data at the laser wavelength of 266 nm and a pressure of 0.1 MPa is established to predict the fluorescence intensity of naphthalene at different temperatures and oxygen concentrations. This formula takes vibrational states, temperature, and oxygen quenching into account. Verified by published experimental data, the formula can predict the fluorescence intensity of naphthalene with an error less than 9%.

About the Authors

B. . An
College of Aerospace Science and Engineering, National University of Defense Technology
Russian Federation


Z. -G. Wang
College of Aerospace Science and Engineering, National University of Defense Technology
Russian Federation


L. -C. Yang
College of Aerospace Science and Engineering, National University of Defense Technology
Russian Federation


X. -P. Li
College of Aerospace Science and Engineering, National University of Defense Technology
Russian Federation


References

1. M. Orain, P. Baranger, C. Ledier, J. Apeloig, F. Grisch, Appl. Phys. B, 116, 729-745 (2014).

2. M. Orain, H. Verdier, F. Grisch, 13th Int. Symposium on Application of Laser Techniques to Fluid Mechanics (2006).

3. A. Arnold, R. Bombach, W. Hubschmid, A. Inauen, B. Käppeli, Exp. Fluids, 29, 468-477 (2000).

4. R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, J. A. Sutton, Appl. Phys. B, 108, 377-392 (2012).

5. P. C. Miles, Appl. Opt., 38, 1714-1732 (1999).

6. S. Zhang, X. Yu, F. Li, G. Kang, L. Chen, X. Zhang, Opt. Laser. Eng., 50, 877-882 (2012).

7. P. Baranger, M. Orain, F. Grisch, 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005).

8. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B, 102, 163-172 (2011).

9. S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B, 110, 81-93 (2013).

10. T. Benzler, S. Faust, T. Dreier, C. Schulz, Appl. Phys. B, 121, 549-558 (2015).

11. T. Liu, J. P. Sullivan, Pressure and Temperature Sensitive Paints, Springer, Heidelberg (2005).

12. R. Devillers, G. Bruneaux, C. Schulz, Appl. Phys. B, 96, 735-739 (2009).

13. W. Koban, J. D. Koch, R. K. Hanson, C. Schulz, Appl. Phys. B, 80, 777-784 (2005).

14. W. Koban, J. D. Koch, R. K. Hanson, C. Schulz, Appl. Phys. B, 80, 147-150 (2005).

15. S. Faust, T. Dreier, C. Schulz, Appl. Phys. B, 112, 203-213 (2013).

16. K. H. Tran, C. Morin, M. Kühni, P. Guibert, Appl. Phys. B, 115, 461-470 (2014).

17. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B, 72, 465-478 (2001).

18. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, New York and London (1971).

19. B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw Hill Education, New York (2001).


Review

For citations:


An B., Wang Z.-., Yang L.-., Li X.-. A SEMI-EMPIRICAL FORMULA OF THE DEPENDENCE OF THE FLUORESCENCE INTENSITY OF NAPHTHALENE ON TEMPERATURE AND THE OXYGEN CONCENTRATION. Zhurnal Prikladnoii Spektroskopii. 2017;84(4):527-531. (In Russ.)

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)