Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Radiative Characteristics of Shock Heated Oxygen

https://doi.org/10.47612/0514-7506-2022-89-1-64-68

Abstract

The emission spectra of oxygen behind the front of a strong shock wave have been studied in the shock wave velocity ranges of 5.7–7.4 and 8.1–10.0 km/s at pressures before the wave front of 1.0 and 0.25 Torr. Time-integrated sweeps of radiation in a wide spectral range of 200–675 nm as well as temporal oscillograms of oxygen radiation have been obtained. An analysis of the obtained panoramic spectra shows that at low velocities of the shock wave, the system of Schumann–Runge molecular bands dominates in the emission spectrum. An increase in the shock wave velocity leads to the appearance of intense atomic lines in the emission spectrum. The peculiarities of temporal oscillograms for the most typical spectral lines, such as radiation of molecular oxygen at a wavelength of 213 nm (Schumann–Runge system) and radiation of atomic oxygen at wavelengths of 394 and 645 nm, are highlighted.

About the Authors

I. E. Zabelinsky
Institute of Mechanics of Lomonosov Moscow State University
Russian Federation

Moscow



N. G. Bikova
Institute of Mechanics of Lomonosov Moscow State University
Russian Federation

Moscow



P. V. Kozlov
Institute of Mechanics of Lomonosov Moscow State University
Russian Federation

Moscow



V. Yu. Levashov
Institute of Mechanics of Lomonosov Moscow State University
Russian Federation

Moscow



G. Ya. Gerasimov
Institute of Mechanics of Lomonosov Moscow State University
Russian Federation

Moscow



References

1. G. V. Candler. Annu. Rev. Fluid Mech., 51 (2019) 379—402.

2. O. Uyanna, H. Najafi. Acta Astronaut., 176 (2020) 341—356.

3. S. Gu, H. Olivier. Prog. Aerospace Sci., 113, N 100607 (2020) 1—27.

4. P. L. Collen, L. J. Doherty, M. McGilvray, I. Naved, R. P. Geraets, T. Hermann, R. G. Morgan, D. E. Gildfind. AIAA Paper, N 1941 (2019) 1—14.

5. M. Lino da Silva, R. Ferreira, J. Vargas, R. Rodrigues, B. Carvalho, L. L. Alves, B. Goccalves. AIAA Paper, N 0624 (2020) 1—11.

6. I. E. Zabelinskii, L. B. Ibragimova, O. P. Shatalov. J. Appl. Spectr., 73, N 1 (2006) 10—15.

7. L. B. Ibraguimova, A. L. Sergievskaya, V. Yu. Levashov, O. P. Shatalov, Yu. V. Tunik, I. E. Zabelinskii. J. Chem. Phys., 139, N 034317 (2013) 1—10.

8. Z. Qin, J. M. Zhao, L. H. Liu. J. Quant. Spectrosc. Radiat. Transf., 202, N 1 (2017) 286—301.

9. K. M. Hanquist, I. D. Boyd. AIAA Paper, N 3567 (2019) 1—25.

10. J. W. Streicher, A. Krish, R. K. Hanson. Phys. Fluids, 32, N 076103 (2020) 1—22.

11. A. S. Dikalyuk, S. T. Surzhikov, P. V. Kozlov, O. P. Shatalov, Yu. V. Romanenko. AIAA Paper, N 2505 (2013) 1—27.

12. P. V. Kozlov, S. T. Surzhikov. AIAA Paper, N 0157 (2017) 1—26.

13. P. V. Kozlov. J. Phys.: Conf. Ser., 1009, N 012024 (2018) 1—6.

14. P. V. Kozlov, I. E. Zabelinskii, N. G. Bykova, V. Yu. Levashov, G. Ya. Gerasimov. J. Appl. Spectr., 88, N 2 (2021) 306—310.

15. D. H. Parker. Acc. Chem. Res., 33, N 8 (2000) 563—571.

16. M. Nations, S. Wang, C. S. Goldenstein, D. F. Davidson, R. R. Hanson. J. Phys. Chem. A, 120, N 42 (2016) 8234—8243.

17. C. O. Johnson. AIAA Paper, N 1245 (2008) 1—19.

18. S. T. Surzhikov. Fluid Dynam., 54, N 1 (2019) 98—113.


Review

For citations:


Zabelinsky I.E., Bikova N.G., Kozlov P.V., Levashov V.Yu., Gerasimov G.Ya. Radiative Characteristics of Shock Heated Oxygen. Zhurnal Prikladnoii Spektroskopii. 2022;89(1):64-68. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-1-64-68

Views: 439


ISSN 0514-7506 (Print)