Radiative Characteristics of Shock Heated Oxygen
https://doi.org/10.47612/0514-7506-2022-89-1-64-68
Abstract
The emission spectra of oxygen behind the front of a strong shock wave have been studied in the shock wave velocity ranges of 5.7–7.4 and 8.1–10.0 km/s at pressures before the wave front of 1.0 and 0.25 Torr. Time-integrated sweeps of radiation in a wide spectral range of 200–675 nm as well as temporal oscillograms of oxygen radiation have been obtained. An analysis of the obtained panoramic spectra shows that at low velocities of the shock wave, the system of Schumann–Runge molecular bands dominates in the emission spectrum. An increase in the shock wave velocity leads to the appearance of intense atomic lines in the emission spectrum. The peculiarities of temporal oscillograms for the most typical spectral lines, such as radiation of molecular oxygen at a wavelength of 213 nm (Schumann–Runge system) and radiation of atomic oxygen at wavelengths of 394 and 645 nm, are highlighted.
About the Authors
I. E. ZabelinskyRussian Federation
Moscow
N. G. Bikova
Russian Federation
Moscow
P. V. Kozlov
Russian Federation
Moscow
V. Yu. Levashov
Russian Federation
Moscow
G. Ya. Gerasimov
Russian Federation
Moscow
References
1. G. V. Candler. Annu. Rev. Fluid Mech., 51 (2019) 379—402.
2. O. Uyanna, H. Najafi. Acta Astronaut., 176 (2020) 341—356.
3. S. Gu, H. Olivier. Prog. Aerospace Sci., 113, N 100607 (2020) 1—27.
4. P. L. Collen, L. J. Doherty, M. McGilvray, I. Naved, R. P. Geraets, T. Hermann, R. G. Morgan, D. E. Gildfind. AIAA Paper, N 1941 (2019) 1—14.
5. M. Lino da Silva, R. Ferreira, J. Vargas, R. Rodrigues, B. Carvalho, L. L. Alves, B. Goccalves. AIAA Paper, N 0624 (2020) 1—11.
6. I. E. Zabelinskii, L. B. Ibragimova, O. P. Shatalov. J. Appl. Spectr., 73, N 1 (2006) 10—15.
7. L. B. Ibraguimova, A. L. Sergievskaya, V. Yu. Levashov, O. P. Shatalov, Yu. V. Tunik, I. E. Zabelinskii. J. Chem. Phys., 139, N 034317 (2013) 1—10.
8. Z. Qin, J. M. Zhao, L. H. Liu. J. Quant. Spectrosc. Radiat. Transf., 202, N 1 (2017) 286—301.
9. K. M. Hanquist, I. D. Boyd. AIAA Paper, N 3567 (2019) 1—25.
10. J. W. Streicher, A. Krish, R. K. Hanson. Phys. Fluids, 32, N 076103 (2020) 1—22.
11. A. S. Dikalyuk, S. T. Surzhikov, P. V. Kozlov, O. P. Shatalov, Yu. V. Romanenko. AIAA Paper, N 2505 (2013) 1—27.
12. P. V. Kozlov, S. T. Surzhikov. AIAA Paper, N 0157 (2017) 1—26.
13. P. V. Kozlov. J. Phys.: Conf. Ser., 1009, N 012024 (2018) 1—6.
14. P. V. Kozlov, I. E. Zabelinskii, N. G. Bykova, V. Yu. Levashov, G. Ya. Gerasimov. J. Appl. Spectr., 88, N 2 (2021) 306—310.
15. D. H. Parker. Acc. Chem. Res., 33, N 8 (2000) 563—571.
16. M. Nations, S. Wang, C. S. Goldenstein, D. F. Davidson, R. R. Hanson. J. Phys. Chem. A, 120, N 42 (2016) 8234—8243.
17. C. O. Johnson. AIAA Paper, N 1245 (2008) 1—19.
18. S. T. Surzhikov. Fluid Dynam., 54, N 1 (2019) 98—113.
Review
For citations:
Zabelinsky I.E., Bikova N.G., Kozlov P.V., Levashov V.Yu., Gerasimov G.Ya. Radiative Characteristics of Shock Heated Oxygen. Zhurnal Prikladnoii Spektroskopii. 2022;89(1):64-68. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-1-64-68