Digital Colorimetry of Indicator Test-Systems Using a Smartphone and Chemometric Analysis in Determination of Quinolones in Pharmaceuticals
https://doi.org/10.47612/0514-7506-2022-89-1-84-93
Abstract
A combined approach has been developed for the identification and determination of quinolone antibiotics in pharmaceuticals using solid-phase fluorescence digital colorimetry and chemometric analysis. The eigen fluorescence of quinolones and quinolone-sensitized fluorescence of europium(III) have been studied on various matrices. The paper proposes a test-system consisting of four indicator zones. Under irradiation with ultraviolet light (365 nm) of quinolone solutions applied to the indicator zones of test systems, there are observed blue fluorescence on cellulose paper (CP) and plates for high performance thin layer chromatography (HPTLC) and pink (CP–Eu, HPTLC–Eu) fluorescence. The measurement of the fluorescence intensity on the surface of the matrices has been carried out using a smartphone. The possibility of using chemometric analysis, which makes it possible to reduce the analysis time and visualize research data, has been shown. The data array was processed by principal component methods, hierarchical cluster analysis, and the kmean method using the XLSTAT software. The identification and assessment of the quantitative content of quinolone antibiotics in tablet forms have been carried out using chemometric analysis. The calibration dependences in the РСА and k-mean methods have a logarithmic form in the ranges of the determined concentrations of 0.5–250 μg/ml (R2 ≥ 0.98). A technique for the determination of fluoroquinolones in pharmaceuticals has been proposed. The relative standard deviation does not exceed 0.09.
About the Authors
V. G. AmelinRussian Federation
Vladimir; Moscow
Z. А. C. Shogah
Russian Federation
Vladimir
D. S. Bolshakov
Russian Federation
Vladimir
A. V. Tretyakov
Russian Federation
Moscow
References
1. Государственная фармакопея Российской Федерации, XIV изд., Т. III, Москва (2018).
2. T. D. Nguyen, H. B. Le, T. O. Dong, T. D. Pham. J. Anal. Methods Chem. (2018) 1—11.
3. S. Mostafa, M. El-Sadek, E. A. Alla. Pharm. Biomed. Anal., 28 (2002) 173—180.
4. A. S. Amin, A. A. E. Gouda, R. El-Sheikh, F. Zahran. Spectrochim. Acta A, 67 (2007) 1306—1312.
5. J. A. O. Gonzalez, M. C. Mochon, F. J. B. de la Rosa. Talanta, 52 (2000) 1149—1156.
6. J. A. Ocana, F. J. Barragan, M. Callejon. J. Pharm. Biomed. Anal., 37 (2005) 327—332.
7. J. A. Ocana, F. J. Barragan, M. Callejon. Talanta, 63 (2004) 691—697.
8. C. Guo, P. Dong, Z. Chu, L. Wang, W. Jiang. Luminescence, 23 (2008) 7—13.
9. S. N. Shtykov, T. D. Smirnova, Y. G. Bylinkin, N. V. Kalashnikova, D. A. Zhemerichkin. J. Anal. Chem., 62 (2007) 136—140.
10. S. Beltyukova, O. Teslyuk, A. Egorova, E. Tselik. J. Fluorescence, 12, N 2 (2002) 269—272.
11. A. Egorova, S. Beltyukova, O. Teslyuk. J. Pharm. Biomed. Anal., 21 (1999) 585—590.
12. R. C. Rodriguez-Diaz, M. P. Aguilar-Caballos, A. Gomez-Hens. Anal. Chim. Acta, 494 (2003) 55—62.
13. X. Zhu, A. Gong, S. Yu. Spectrochim. Acta A, 69 (2008) 478—482.
14. Д. С. Большаков, В. Г. Амелин, Т. Б. Никешина. Журн. аналит. химии, 71, № 1 (2016) 97—104.
15. О. В. Моногарова, К. В. Осколок, В. В. Апяри. Журн. аналит. химии, 73, № 11 (2018) 857—867.
16. В. В. Апяри, М. В. Горбунова, А. И. Исаченко, С. Г. Дмитриенко, Ю. А. Золотов. Журн. аналит. химии, 72, № 11 (2017) 963—977.
17. В. М. Иванов, О. В. Кузнецова. Успехи химии, 70, № 5 (2001) 411—428.
Review
For citations:
Amelin V.G., Shogah Z.C., Bolshakov D.S., Tretyakov A.V. Digital Colorimetry of Indicator Test-Systems Using a Smartphone and Chemometric Analysis in Determination of Quinolones in Pharmaceuticals. Zhurnal Prikladnoii Spektroskopii. 2022;89(1):84-93. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-1-84-93