Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nondestructive Rapid Identification of Soybean Varieties Using Hyperspectral Imaging Technology (In Engl.)

Abstract

Hyperspectral imaging technology was used to classify four types of soybean varieties. The reflectance spectra of four varieties of soybeans were extracted from hyperspectral images covering wavelengths from 400 to 1000 nm. Firstly, exploratory principal component analysis and linear discriminant analysis (LDA) were carried out to infer the separability of soybean spectral data. Secondly, the spectral data were preprocessed using multiplicative scattering correction (MSC), Savitzky–Golay (SG) smoothing, and MSC and SG smoothing together. Finally, classification models based on LDA, support vector machine (SVM), and k nearest neighbor (KNN) were established based on the full wavelengths or feature wavelengths. MSC and SG smoothing joint preprocessing of the spectral data was applied to establish the SVM classification model based on the full wavelengths, which returned a classification accuracy of 95.19%. Random forest was used to select the feature wavelengths from the full wavelengths to establish the LDA classification model, and the classification accuracy reached 82.69%. The results showed that the hyperspectral imaging technique combined with SVM, KNN, and LDA algorithms can be used to classify different soybean varieties in a fast and nondestructive way.

About the Authors

L. Wang
School of Technology at Beijing Forestry University
China

Beijing



L. Pang
School of Technology at Beijing Forestry University
China

Beijing



L. Yan
School of Technology at Beijing Forestry University
China

Beijing



J. Zhang
School of Technology at Beijing Forestry University
China

Beijing



References

1. Baek Insuck, Kusumaningrum Dewi, Kandpal Lalit Mohan, Lohumi Santosh, Mo Changyeun, Kim S. Moon, Cho Byoung-Kwan, Sensors, 19, No. 2 (2019), https://doi.org/10.3390/s19020271.

2. M. T. McCarville, C. C. Marett, M. P. Mullaney, G. D. Gebhart, G. L. Tylka, Plant Health Prog., 18, 146–155 (2017), https://doi.org/10.1094/PHP-RS-16-0062.

3. K. M. Maria John, S. Natarajan, D. L. Luthria, Food Chem., 211, 347–355 (2016), https://doi.org/10.1016/j.foodchem.2016.05.055.

4. S. Ye, Y. Wang, D. Huang, J. Li, Y. Gong, L. Xu, L. Liu, Sci. Horticult., 155, 92–96 (2013), https://doi.org/10.1016/j.scienta.2013.03.016.

5. S. Vanisri, R. Durga, G. Swathi, M. Jamal, M. Sreedhar, N. R. Kumar, E. Ramprasad, Y. Raviteja, Agric. Res. (2018), https://doi.org/10.1007/s40003-018-0324-8.

6. K. Moorthy, P. Babu, M. Sreedhar, et al., J. Seed Sci. Technol., 39, No. 2, 282–292 (2011), https://doi.org/10.1007/s10681-007-9630-0.

7. D. Guo, Q. Zhu, M. Huang, et al., Comput. Electron. Agric., 142, 1–8 (2017), https://doi.org/10.1016/j.compag.2017.08.015.

8. X. Feng, et al., Sensors (Basel), 17, No. 8, 1894 (2017), https://doi.org/10.3390/s17081894.

9. M. Huang, J. Tang, B. Yang, Q. Zhu, Comput. Electron. Agric., 122, 139–145 (2016), https://doi.org/10.1016/j.compag.2016.01.029.

10. S. Jia, et al., J. Cereal Sci., 63, 21–26 (2015), https://doi.org/10.1016/j.jcs.2014.07.003.

11. Y. Zhao, et al., Molecules, 23, No. 6 (2018), https://doi.org/10.3390/molecules23061352.

12. Susu Zhu, Lei Zhou, Chu Zhan, Yidan Ba, Baohua Wu, Hangjian Chu, Yue Y, Yong He, Lei Feng, Sensors, 19, 4065 (2019), https://doi.org/10.3390/s19194065.

13. X. He, X. Feng, D. Sun, et al., Molecules, 24, No. 12, 2227 (2019), https://doi.org/10.3390/molecules24122227.

14. N. Wu, Y. Zhang, R. Na, C. Mi, S. Zhu, Y. He, C. Zhang, RSC Adv., 12635–12644 (2019), https://doi.org/10.1039/c8ra10335f.

15. L. Ravikanth, C. B. Singh, D. S. Jayas, N. D. White, Biosyst. Eng., 135, 73–86 (2015), https://doi.org/10.1016/j.biosystemseng.2015.04.007.

16. T. Isaksson, T. Næs, Appl. Spectrosc., 42, No. 7, 1273–1284 (1988), http://doi.org/10.1366/0003702884429869.

17. A. Savitzky, M. J. E. Golay, Anal. Chem., 36, 1627–1639 (1964), http://dx.doi.org/10.1021/ac60214a047.

18. J. Yang, V. Honavar, IEEE Intell. Systems Their Appl., 13, No. 2, 44–49 (1998), https://doi.org/10.1109/5254.671091.

19. Y. Zhao, S. Zhu, C. Zhang, X. Feng, L. Feng, Y. He, RSC Adv., 1337–1345 (2018), https://doi.org/10.1039/C7RA05954J.

20. X. Feng, C. Peng, Y. Chen, X. Liu, X. Feng, Y. He, Sci. Rep., 15934 (2017), https://doi.org/10.1038/s41598-017-16254-z.


Review

For citations:


Wang L., Pang L., Yan L., Zhang J. Nondestructive Rapid Identification of Soybean Varieties Using Hyperspectral Imaging Technology (In Engl.). Zhurnal Prikladnoii Spektroskopii. 2022;89(1):94-101.

Views: 257


ISSN 0514-7506 (Print)