Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectral and Plasma Characteristics of Atmospheric Pressure Glow Discharge between Solution Cathode and Hollow Metal Anode with Miniature Argon Gas Flow

Abstract

An atmospheric pressure glow discharge between solution cathode and hollow anode with miniature argon gas flow was built. The spectra of excited species (including NO, O, N2, H, and Ar) in the plasma and the characteristic parameters of the plasma were investigated. The result shows that argon gas increases the spectral intensity of the high energy species in the cathode and anode. Additionally, the plasma image and the distribution of sound frequency are collected. As the flow rate of argon increases, the plasma volume is significantly smaller. The audio signal in the high frequency band (~10000 Hz) is weakened while the argon flow rate increases. The range of sound distribution within the low frequency band becomes wider (from ~2000–3000 to ~2000–5000 Hz). This shows that argon can affect the stability of the plasma and the collision of internal particles. We also measured the spectral parameters (including electron excited temperature, rotational temperature, and electron number density). The result shows that improvement of the argon flow rate in the near cathode region can also increase the plasma parameters. The electron excited temperature and electron number density are higher in the region near the anode.

About the Authors

P. Zheng
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



R. Liu
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



J. Wang
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



Yu. Luo
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



H. Zhao
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



X. Mao
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



Ch. Lai
Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering at Chongqing University of Posts and Telecommunications
China

Chongqing



References

1. . T. P. Liu, M. T. Liu, J. X. Liu, X. F. Mao, S. S. Zhang, Y. B. Shao, X. Na, G. Y. Chen, Y. Z. Qian, Anal. Chem. Acta, 1121, 42–49 (2020).

2. M. K. Thakur, C. Y. Fang, Y. T. Yang, T. A. Effendi, P. K. Roy, R. S. Chen, K. O. Kostya, W. H. Chiang, S. Chattopadhyay, ACS Appl. Mater. Interfaces, 12, 28550–28560 (2020).

3. H. Kabbara, S. Kasri, O. Brinza, G. Bauville, K. Gazeli, J. S. Sousa, V. Mille, A. Tallaire, G. Lombardi, C. Lazzaroni, Appl. Phys. Lett., 116, 171902 (2020).

4. M. K. Satapathy, Y. B. Manga, K. K. Ostrikov, W. H. Chiang, A. Pandey, R. Lekha, B. Nyambat, E. Y. Chuang, C. H. Chen, ACS Appl. Mater. Interfaces, 12, 86–95 (2020).

5. T. A. Doroski, A. M. King, M. P. Fritz, M. R. Webb, J. Anal. Atom. Spectrom., 28, 1090–1095 (2013).

6. A. J. Schwartz, Z. Wang, S. J. Ray, G. M. Hieftje, Anal. Chem., 85, 129–137 (2013).

7. T. Cserfalvi, P. Mezei, P. Apai, J. Phys. D. Appl. Phys., 26, 2184–2188 (1993).

8. C. D. Quarles, A. J. Carado, C. J. Barinaga, D. W. Koppenaal, R. K. Marcus, Anal. Bioanal. Chem., 402, 261–268 (2012).

9. M. R. Webb, F. J. Andrade, G. M. Hieftje, Anal. Chem., 79, 7899–7905 (2007).

10. R. K. Marcus, C. Q. Burdette, B. T. Manard, L. X. Zhang, Anal. Bioanal. Chem., 405, 8171–8184 (2013).

11. K. Greda, P. Jamroz, P. Pohl, J. Anal. Atom. Spectrom., 28, 1233–1241 (2013).

12. P. H. Zheng, W. Q. Li, J. M. Wang, N. S. Wang, C. Zhong, Y. J. Luo, X. F. Wang, X. F. Mao, C. H. Lai, Anal. Lett., 53, 693–704 (2020).

13. J. M. Mo, Q. Li, X. H. Guo, G. X. Zhang, Z. Wang, Anal. Chem., 89, 10353–10360 (2017).

14. M. A. Dempster, R. K. Marcus, Spectrochim. Acta B, 55, 599–610 (2000).

15. M. A. Dempster, W. C. Davis, R. K. Marcus, P. R. Cable-Dunlap, J. Anal. Atom. Spectrom., 16, 115–121 (2001).

16. K. Greda, P. Jamroz, P. Pohl, J. Anal. Atom. Spectrom., 29, 893–902 (2014).

17. K. Greda, K. Kurcbach, K. Ochromowicz, T. Lesniewicz, P. Jamroz, P. Pohl, J. Anal. Atom. Spectrom., 30, 1743–1751 (2015).

18. M. R. Webb, G. C. Y. Chan, F. J. Andrade, G. Gamez, G. M. Hieftje, J. Anal. Atom. Spectrom., 21, 525–530 (2006).

19. T. Verreycken, A. F. H. van Gessel, A. Pageau, P Bruggeman, Plasma Sour. Sci. Technol., 20, 024002 (2011).

20. B. T. Manard, J. J. Gonzalez, A. Sarkar, M. R. Dong, J. Chirinos, X. L. Mao, R. E. Russo, R. K. Marcus, Spectrochim. Acta B, 94, 39–47 (2014).

21. J. M. Wang, P. F. Tang, P. C. Zheng, X. Zhai, J. Anal. Atom. Spectrom., 32, 1925–1931 (2017).

22. H. Liu, E. J. Lavernia, R. H. Rangel, J. Phys. D. Appl. Phys., 26, 1900–1908 (1993).

23. P. Jamroz, W. Zyrnicki, P. Pohl, Spectrochim. Acta B, 73, 26–34 (2012).

24. P. Mezei, T. Cserfalvi, Appl. Spectr. Rev., 42, 573–604 (2007).

25. C. Lalo, J. Deson, C. Cerveau, R. I. Benaim, Plasma Chem. Plasma P., 13, 351–364 (1993).

26. Q. Li, X. Zhu, J. Li, Y. Pu, J. Appl. Phys., 107, 043304 (2010).

27. P. Mezei, T. Cserfalvi, M. Janossy, J. Anal. Atom. Spectrom., 12, 1203–1208 (1997).

28. W. H. Zhao, H. Z. Tang, Y. Shen, Y. Shi, L. Y. Hou, Spectrosc. Spectr. Anal., 27, 2145–2149 (2007).

29. J. M. Wang, M. He, P. C. Zheng, Y. Y. Chen, X. F. Mao, Anal. Lett., 52, 697–712 (2019).

30. Y. Liu, J. Beijing Inst. Light Ind., 18, 27–30 (2000).

31. X. B. Chen, X. S. Cai, X. L. Fan, J. Q. Shen, Spectrosc. Spectr. Anal., 29, 3177–3180 (2009).

32. M. Kumai, Y. Takamura, Jpn. J. Appl. Phys., 50, 096001 (2011).

33. S. V. Dresvin, J. Amouroux, Adv. Heat Transf., 40, 451–521 (2007).

34. P. C. Zheng, J. M. Wang, Z. F. Hu, H. G. Hao, Y. Wang, High Volt. Apparatus, 46, 18–21 (2010).

35. P. Jamroz, W. Zyrnicki, Plasma Chem. Plasma Process, 31, 681–696 (2011).

36. G. Faure, S. M. Shkol’nik, J. Phys. D. Appl. Phys., 31, 1212–1218 (1998).

37. K. Greda, M. Gorska, M. Welna, P. Jamroz, P. Pohl, Talanta, 199, 107–115 (2019).

38. K. Swiderski, A. Dzimitrowicz, P. Jamroz, P. Pohl, J. Anal. Atom. Spectrom., 33, 437–451 (2018).

39. M. L. Shah, B. M. Suri, G. P. Gupta, Eur. Phys. J. D., 69, 16 (2015).

40. J. M. Gomba, C. D’Angelo, D. Bertuccelli, G. Bertuccelli, Spectrochim. Acta B, 56, 695–705 (2001).

41. T. Cserfalvi, P. Mezei, J. Anal. Atom. Spectrom., 18, 596–602 (2003).

42. K. Greda, P. Jamroz, P. Pohl, J. Anal. Atom. Spectrom., 28, 134–141 (2013).

43. P. Mezei, T. Cserfalvi, Sensors, 12, 6576–6586 (2012).

44. B. Gielniak, T. Fiedler, J. A. C. Broekaert, Spectrochim. Acta B, 66, 21–27 (2011).

45. B. N. Sismanoglu, J. Amorim, J. A. Souza-Correa, C. Oliveira, M. P. Gomes, Spectrochim. Acta B, 64, 1287–1293 (2009).

46. V. Kanicky, V. Otruba, J. Mermet, Talanta, 48, 859–866 (1999).

47. P. Mezei, T. Cserfalvi, L. Csillag, J. Phys. D. Appl. Phys., 38, 2804–2811 (2005).

48. P. Mezei, T. Cserfalvi, Eur. Phys. J. Appl. Phys., 40, 89–94 (2007).

49. H. Yuan, D. Yang, X. Li, Phys. Plasm., 26, 053505 (2019).


Review

For citations:


Zheng P., Liu R., Wang J., Luo Yu., Zhao H., Mao X., Lai Ch. Spectral and Plasma Characteristics of Atmospheric Pressure Glow Discharge between Solution Cathode and Hollow Metal Anode with Miniature Argon Gas Flow. Zhurnal Prikladnoii Spektroskopii. 2022;89(1):133-142.

Views: 193


ISSN 0514-7506 (Print)