Ultrasound-Assisted Dispersive Microsolid-Phase Extraction for Preconcentration of Trace Cobalt and Nickel in Environmental Samples Prior to Their Determination by Flame Atomic Absorption Spectrometry
Abstract
A new, green, simple, and validated ultrasound-assisted dispersive microsolid-phase extraction method applying unprecedented adsorbent-modified multiwalled carbon nanotubes was achieved for preconcentration and separation of trace cobalt (Co(II)) and nickel (Ni(II)) ions in diverse ecological samples before determination by flame atomic absorption spectrometry. The suggested approach uses a novel chelating agent named 3-(2,4-dihydroxyphen-1-ylazo)-1,2,4-triazole, which is chelated with Co(II) or Ni(II) ions as efficient and selective sorbent at pH 8.0. The impact of many parameters has been studied and optimized. Under ideal conditions, the calibration curves were linear within 1.0–200 and 2.0–300 μg/L ranges, with limits of detection equaling 0.30 and 0.60 μg/L for Co(II) and Ni(II) ions, respectively. The preconcentration factor attained 200, while the highest sorption capacities of Co(II) and Ni(II) are around 300 and 380 mg/g, respectively. The relative standard deviation (%RSD) regarding repeatability for Co(II) and Ni(II) upon calculation was 1.30 and 1.70% for intraday, and 1.750 and 1.95% for interday. To ensure the correctness of the suggested preconcentration approach, certified reference materials (SRM 1570A spinach leaves and TMDA-52.3 enriched water) were employed. The proposed approach was applied to determine the concentration of Co(II) and Ni(II) ions in a range of genuine water, juice, and food samples, and the findings were excellent.
About the Authors
A. A. GoudaEgypt
Zagazig
R. El Sheikh
Egypt
Zagazig
H. M. El Sayed
Egypt
Zagazig
A. M. Khedr
Egypt
Tanta
Sh. Abo Al Ezz
Egypt
Zagazig
W. Gamil
Egypt
Zagazig
M. Hamdy
Egypt
Port Said
References
1. ATSDR, Toxicological Profile for Cobalt, U. S. Department of Health and Human Services, Atlanta (2001).
2. A. A. Gouda, R. El Sheikh, A. M. Khedr, S. Abo Al Ezz, W. Gamil, M. M. El-Gabry, E. H. Youssef, Int. J. Environ. Anal. Chem. (2021), doi: 10.1080/03067319.2021.1928106.
3. S. Dahiya, R. Karpe, A. G. Hegde, R. M. Sharma, J. Food Compos. Anal., 18, 517–522 (2005).
4. Y. Şahan, F. Basoglu, S. Gücer, Food. Chem., 105, 395–399 (2007).
5. W. J. Barreto, S. R. G. Barreto, I. S. Scarminio, D. N. Ishikawa, M. F. Soares, M. V. B. de Proença, Quim. Nova, 33, 109–113 (2010).
6. N. Baghban, A. M. H. Shabani, S. Dadfarnia, A. A. Jafari, J. Braz. Chem. Soc., 20, 832–838 (2009).
7. J. E. O’Sullivan, R. J. Watson, E. C. V. Butler, Talanta, 115, 999–1010 (2013).
8. F. Nekouei, S. Nekouei, Indian J. Sci. Res., 8, 138–145 (2014).
9. M. A. Akl, S. A. Ahmad, Egypt. J. Chem., 62, 1917–1931 (2019).
10. M. Sadia, M. R. Jan, J. Shah, G. M. Greenway, Int. J. Environ. Anal. Chem., 93, 1537–1556 (2013).
11. B. Feist, B. Mikula, Food Chem., 147, 302–306 (2014).
12. S. V. Smirnova, D. V. Ilin, I. V. Pletnev, Talanta, 221, 121485 (2021).
13. Z. A. Alothman, Y. E., Unsal M. Habila, M. Tuzen, M. Soylak, Desalin. Water Treat., 53, 3457–3465 (2015).
14. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, M. Soylak, J. Hazard Mater., 150, 533–540 (2008).
15. D. Citak, M. Tuzen, M. Soylak, Food Chem. Toxic., 47, 2302–2307 (2009).
16. S. Saracoglu, M. Soylak, D. Çabuk, Z. Topalak, Y. Karagozlu, J. AOAC Int., 95, 892–896 (2012).
17. L. S. Moreira, Í. P. Sá, R. C. Machado, A. R. A. Nogueira, E. G. P. da Silva, C. D. B. Amaral, Spectrochim. Acta B, At. Spectrosc., 169, 105899 (2020).
18. M. Soylak, A. Aydin, N. Kizil, J. AOAC Int., 99, 273–278 (2016).
19. E. Yildiz, Ş. Saçmaci, Ş. Kartal, M. Saçmaci, Food Chem., 194, 143–148 (2016).
20. H. Serencam, C. Duran, D. Ozdes, H. Bektas, Acta Chim. Slov., 60, 287–293 (2013).
21. M. Soylak, A. Aydin, Food Chem. Toxic., 49, 1242–1248 (2011).
22. Z. A. Alothman, E. Yilmaz, M. Habila, M. Soylak, Turk. J. Chem., 39, 1038–1049 (2015).
23. G. Alpdoğan, Toxicol. Environ. Chem., 98, 179–188 (2016).
24. B. Topuz, Biol. Trace Elem. Res., 194, 295–302 (2020).
25. M. A. Habila, Z. A. Alothman, E. Yilmaz, M. Soylak, Int. J. Environ. Anal. Chem., 98, 171–181 (2018).
26. A. Duran, M. Tuzen, M. Soylak, J. Hazard. Mater., 169, 466–471 (2009).
27. L. Meng, C. Chen, Y. Yang, Anal. Lett., 48, 453–463 (2015).
28. M. Soylak, E. Yilmaz, J. Hazard Mater., 182, 704–709 (2010).
29. M. Shirani, F. Salari, S. Habibollahi, A. Akbari, Microchem. J., 152, 104332–104340 (2020).
30. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, M. Soylak, J. Hazard Mater., 150, 533–540 (2008).
31. A. A. Gouda, A. M. Summan, A. H. Amin, RSC Adv., 6, 94048–94057 (2016).
32. N. K. Temel, K. Sertakan, R. Gürkan, Biol. Trace Elem. Res., 186, 597–607 (2019).
33. H. Xu, W. Zhang, X. Zhang, J. Wang, J. Wang, Proc. Environ. Sci., 18, 258–263 (2013).
34. A. Moghimi, M. J. Poursharifi, Asian J. Chem., 23, 1435–1438 (2011).
35. M. Bahram, S. Khezri, Anal. Methods, 4, 384–393 (2012).
36. M. Soylak, M. Koksal, Microchem. J., 147, 832–837 (2019)
37. S. M. Sorouraddin, M. A. Farajzadeh, T. Okhravi, Sep. Sci. Technol., 55, 2955–2966 (2020).
38. T. Okhravi, S. M. Sorouraddin, M. A. Farajzadeh, A. Mohebbi, Anal. Bioanal. Chem., 412, 1675–1684 (2020).
39. Ç. Arpa, I. Arıdaşır, Food Chem., 284, 16–22 (2019).
40. N. Khorshidi, A. Niazi, Sep. Sci. Technol., 51, 1675–1683 (2016).
41. B. Barfi, M Rajabi, A. Asghari, Biol. Trace Elem. Res., 170, 496–507 (2016).
42. H. R. Sobhi, A. Mohammadzadeh, M. Behbahani, A. Esrafili, Microchem. J., 146, 782–788 (2019).
43. M. Rajabi, M. Abolhosseini, A. Hosseini-Bandegharaei, M. Hemmati, N. Ghassab, Microchem. J., 159, 105450 (2020).
44. J. M. Nakhaei, M. R. Jamali, S. Sohrabnezhad, R. Rahnama, Microchem. J., 144, 88–92 (2019).
45. B. Feist, R. Sitko, Microchem. J., 147, 30–36 (2019).
46. C. H. Latorre, J. A. Mendez, J. B. Garcia, S. G. Martin, R. M. P. Crecente, Anal. Chim. Acta, 749, 16–35 (2012).
47. M. Krawczyk, M. Jeszka-Skowron, Microchem. J., 126, 296–301 (2016).
48. M. Soylak, E. Yilmaz, M. Ghaedi, M. Montazerozohori, Toxicol. Environ. Chem., 93, 873–885 (2011).
49. B. Feist, Food Chem., 209, 37–42 (2016).
50. Z. A. ALOthman, E. Yilmaz, M. Habila, I. H. Alsohaimi, A. M. Aldawsari, N. M. Al-Harbi, M. Soylak, RSC Adv., 5, 106905–106911 (2015).
51. E. Yilmaz, M. Soylak, Environ. Monit. Assess., 186, 5461–5468 (2014).
52. Z. A. ALOthman, E. Yilmaz, M. Habila, M. Soylak, Ecotoxicol. Environ. Saf., 112, 74–79 (2015).
53. A. A. Gouda, S. M. Al Ghannam, Food Chem., 202, 409–416 (2016).
54. S. Vellaichamy, K. Palanivelu, J. Hazard Mater., 185, 1131–1139 (2011).
55. Z. A. Al-Othman, M. Habilaa, E. Yilmaz, M. Soylak, Microchim. Acta, 177, 397–403 (2012).
56. A. A. Gouda, Int. J. Environ. Anal. Chem., 94, 1210–1222 (2014).
57. A. M. Khedr, M. Gaber, Spectrosc. Lett., 38, 431–445 (2005).
58. A. M. Khedr, Chem. Pap., 60, 138–142 (2006).
59. H. T. S. Britton, Hydrogen Ions, 4th ed., London, Chapman and Hall, 1168 (1952).
60. A. A. Gouda, Talanta, 146, 435–441 (2016).
61. L. A. Currie, Anal. Chim. Acta, 391, 105–126 (1999).
Review
For citations:
Gouda A.A., El Sheikh R., El Sayed H.M., Khedr A.M., Abo Al Ezz Sh., Gamil W., Hamdy M. Ultrasound-Assisted Dispersive Microsolid-Phase Extraction for Preconcentration of Trace Cobalt and Nickel in Environmental Samples Prior to Their Determination by Flame Atomic Absorption Spectrometry. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):433.