Contribution of Zone Fluctuation Potential and Disordering of Heteroboundaries into a Decrease of Efficiency of Nitride Based LEDs
https://doi.org/10.47612/0514-7506-2023-90-1-29-34
Abstract
The values of the zone fluctuation potential (ZFP) in quantum wells located in the space charge region (SCR) of the p-n junction and the lateral ZFP in quantum wells outside SCR in blue, green, and ultraviolet LEDs based on nitrides have been experimentally determined. By the example of green LEDs, it has been shown that the low external quantum efficiency (EQE) of LEDs at the maximum correlates with an increase in ZFP and disordering of heteroboundaries in quantum wells located in SCR. The decrease in EQE at the maximum is caused by the capture of charge carriers by charged centers localized at disordered heteroboundaries. The value of the lateral ZFP in quantum wells located outside SCR is the main parameter that determines the decrease of EQE from the moment of opening the p-n junction to current densities of 30—40 A/cm2.
About the Authors
E. I. ShabuninaRussian Federation
St. Petersburg
A. E. Chernyakov
St. Petersburg
A. E. Ivanov
St. Petersburg
A. P. Kartashova
St. Petersburg
V. I. Kuchinsky
St. Petersburg
D. S. Poloskin
St. Petersburg
N. A. Talnishnikh
St. Petersburg
N. M. Shmidt
St. Petersburg
A. L. Zakgeim
St. Petersburg
References
1. [1] M. Meneghini, C. De Santi, A. Tibaldi, M. Vallone, F. Bertazzi, G. Meneghesso, E. Zanoni, M. Goano. J. Appl. Phys., 127 (2020) 211102
2. [2] L. Wang, J. Jin, Ch. Mi, Zh. Hao, Y. Luo, Ch. Sun, Y. Han, B. Xiong, J. Wang, H. Li. Materials, 10 (2017) 1233
3. [3] M. A. Caro, S. Schulz, E. P. O’Reilly. Phys. Rev. B, 88 (2013) 214103
4. [4] A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer. J. Appl. Phys., 117 (2015) 134501
5. [5] L. C. Le, D. G. Zhao, D. S. Jiang, L. Li, L. L. Wu, P. Chen, Z. S. Liu, J. Yang, X. J. Li, X. G. He, J. Zhu, H. Wang, S. M. Zhang, H. Yang. J. Appl. Phys., 114 (2013) 143706
6. [6] A. I. Alhassan, N.G. Young, R. M. Farrell, C. Pynn, F. Wu, A. Y. Alyamani, Sh. Nakamura, S. P. Den Baars, J. S. Speck. Opt. Express, 26, N 5 (2018) 5591—5601
7. [7] A. Tian, J. Liu, L. Zhang, Z. Li, M. Ikeda, Sh. Zhang, D. Li, P. Wen, F. Zhang, Y. Cheng, X. Fan, H. Yang. Opt. Express, 25, N 1 (2017) 415—421
8. [8] T.-J. Yang, R. Shivaraman, J. S. Speck, Y.-R. Wu. J. Appl. Phys., 116 (2014) 113104
9. [9] R. Butté, L. Lahourcade, T. K. Uždavinys, G. Callsen, M. Mensi, M. Glauser, G. Rossbach, D. Martin, J.-F. Carlin, S. Marcinkevičius, N. Grandjean. Appl. Phys. Lett., 112 (2018) 032106
10. [10] M. Piccardo, Ch.-K. Li, Y.-R. Wu, J. S. Speck, B. Bonef, R. M. Farrell, M. Filoche, L. Martinelli, J. Peretti, C. Weisbuc. Phys. Rev. B, 95 (2017) 144205
11. [11] Ch.-K. Li, M. Piccardo, L.-Sh. Lu, S. Mayboroda, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, M. Filoche, Y.-R. Wu. Phys. Rev. B, 95 (2017) 144206
12. [12] M. L. Badgutdinov, A. E. Yunovich. Semiconductors, 42 (2008) 429—438
13. [13] S. Schulz, M. A. Caro, C. Coughlan, E. P. O’Reilly. Phys. Rev. B, 91 (2015) 035439
14. [14] V. N. Petrov, V. G. Sidorov, N. A. Talnishnikh, A. E. Chernyakov, E. I. Shabunina, N. M. Shmidta, A. S. Usikov, H. Helava, Yu. N. Makarov. Semiconductors, 50, N 9 (2016) 1173—1179
15. [15] M. Mandurrino, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni. J. Comput. Electron., 14 (2015) 444—455
16. [16] Sh. Zhou, J. Li, Y. Wu, Y. Zhang, Ch. Zheng, Sh. Liu. J. Appl. Phys., 57 (2018) 051003
17. [17] S. Steingrube, O. Breitenstein, K. Ramspeck, S. Glunz, A. Schenk, P. P. Altermatt. J. Appl. Phys., 110 (2011) 014515
18. [18] A. Y. Polyakov, N. M. Shmidt, N. B. Smirnov, I. V. Shchemerov, E. I. Shabunina, N. A. Talnishnih, I.-H. Lee, L. A. Alexanyan, S. A. Tarelkin, S. J. Pearton. J. Appl. Phys., 125 (2019) 215701
19. [19] N. A. Talnishnikh, A. E. Ivanov, A. G. Smirnova, E. I. Shabunina, N. M. Shmidt. J. Phys. Conf. Ser., 1199 (2019) 012015
20. [20] N. M. Shmidt, A. E. Chernyakov, N. A. Talnishnih, A. E. Nikolaev, A. V. Sakharov, V. N. Petrov, E. V. Gushchina, E. I. Shabunina. J. Crystal Growth, 520 (2019) 82—84
21. [21] R. Aleksiejūnas, K. Nomeika, S. Miasojedovas, S. Nargelas, T. Malinauskas, K. Jarašiūnas, Ö. Tuna, M. Heuken. Phys. Status Solidi (b), 252, N 5 (2015) 977—982
22. [22] M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, A. Di Carlo. Phys. Rev. Lett., 116 (2016) 027401
23. [23] G. Pozina, R. Ciechonski, Z. Bi, L. Samuelson, B. Monemar. Appl. Phys. Lett., 107 (2015) 251106
24. [24] A. V. Aladov, A. E. Chernyakov, A. E. Ivanov, A. L. Zakgeim. Tech. Phys. Lett., 47 (2021) 834
25. [25] Е. I. Shabunina, М. Е. Levinshtein, М. М. Kulagina, S. Yu. Kurin, А. Е. Chernyakov, V. N. Petrov, V. V. Ratnikov, I. N. Smirnova, S. I. Troshkov, N. М. Shmidt, А. S. Usikov, H. Helava, Yu. N. Makarov. J. Phys. Conf. Ser., 643 (2015) 012128
26. [26] A. Y. Polyakov, N. M. Shmidt, N. B. Smirnov, I. V. Shchemerov, E. I. Shabunina, N. A. Talnishnih, P. B. Lagov, Yu. S. Pavlov, L. A. Alexanyan, S. J. Pearton. ECS J. Solid State Sci. Technol., 7, N 6 (2018) 323—328
Supplementary files
1. Неозаглавлен | ||
Subject | ||
Type | Other | |
Download
(B)
|
Indexing metadata ▾ |
Review
For citations:
Shabunina E.I., Chernyakov A.E., Ivanov A.E., Kartashova A.P., Kuchinsky V.I., Poloskin D.S., Talnishnikh N.A., Shmidt N.M., Zakgeim A.L. Contribution of Zone Fluctuation Potential and Disordering of Heteroboundaries into a Decrease of Efficiency of Nitride Based LEDs. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):29-34. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-1-29-34