Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Quantitative Analysis of Al Inflour Products by Laser-Induced Breakdown Spectroscopy Combined with Partial Least Squares

Abstract

Based on partial least squares (PLS) analysis, the effects of different smoothing points and different preprocessing methods on the accuracy and precision of the PLS model were compared and analyzed. The results show that the PLS quantitative model has the best effect when using 11-point smoothing combined with standard normal variables (SNVs) as the preprocessing method. The coefficients of determination  (Rc2, Rp2) of the model training set and prediction set are 0.9900 and 0.9996, respectively. The root means square errors (RMSECV, RMSEP) are 11.7 and 5.23, respectively, and the average relative error of prediction is only 2.96%, which indicates a high prediction accuracy rate and accuracy. This work demonstrates that LIBS technology has broad application prospects for the quantitative detection of specific ingredients  in flour products and provides a basis for the real-time monitoring and evaluation of food safety. 

About the Authors

Q. Ding
College of Engineering at Jiangxi Agricultural University
China

Nanchang



M. Yao
College of Engineering at Jiangxi Agricultural University
China

Nanchang



Sh. Wu
College of Engineering at Jiangxi Agricultural University
China

Nanchang



M. Zeng
College of Engineering at Jiangxi Agricultural University
China

Nanchang



N. Xue
College of Engineering at Jiangxi Agricultural University
China

Nanchang



D. Wu
College of Engineering at Jiangxi Agricultural University
China

Nanchang



J. Xu
College of Engineering at Jiangxi Agricultural University
China

Nanchang



References

1. H. Cao, T. Wang, Y. Min, J. Yu, F. Xu, J. Food Prot., 80, No. 10, 523–531 (2017).

2. G. Ma, J. Ethnic Foods, 2, No. 4, 195–199 (2015).

3. P. A. Akin, B. Sezer, T. Sanal, H. Apaydin, H. Koksel, İ. H. Boyaci, J. Cereal Sci., 92, 102920 (2020).

4. F. Liu, C. Zhang, Z. Huang, P. Liu, D. Chen, J. Instrum. Anal., 38, No. 4, 390–395 (2019).

5. S. Akhtar, F. M. Anjum, M. Akbar Anjum, Food Res. Int., 44, No. 3, 652–659 (2010).

6. H. Hua, X. Jiang, S. Wu, Food Chem., 207, 1–5 (2016).

7. A. M. Abdulwahab, Y. A. A. Al-Magdashi, A. Meftah, D. A. Al-Eryani, A. A. Qaid, Chin. J. Phys., 60, 510–521 (2019).

8. S. Sarin, D. Julka, K. D. Gill, Mol. Cell. Biochem., 168, 95–100 (1997).

9. J. L. Greger, C. F. Powers, Toxicology, 76, No. 2, 119–132 (1992).

10. R. O. Oruko, J. N. Edokpayi, T. A. M. Msagati, N. T. Tavengwa, H. J. O. Ogola, G. Ijoma, J. O. Odiyo, Environ. Sci. Poll. Res. Int., 16, No. 7, 480–488 (2019).

11. C. J. Savelli, A. Bradshaw, P. B. Embarek, C. Mateus, Foodborne Pathogens and Disease, 16, No. 7, 480–488 (2019).

12. Z. Chen, T. Shen, J. Yao, W. Wang, F. Liu, X. Li, Y. He, Molecules (Basel, Switzerland), 24, No. 13, 2517 (2019).

13. J. M. R. Antoine, F. L. A. Hoo, C. N. Grant, Toxic. Rep., 4, 181–187 (2017).

14. S. Farahani, N. Eshghi, A. Abbasi, F. Karimi, E. S. Malekabad, M. Rezaei, Toxin Rev., 34, No. 2, 96–100 (2015).

15. R. Chekri, E. Le Calvez, J. Zinck, J. C. Leblanc, V. Sirot, M. Hulin, L. Noël, T. Guérin, J. Food Comp. Anal., 78, 108–120 (2019).

16. M. M. Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, C. Sullivan, Trends Food Sci. Tech., 65, 80–93 (2017).

17. X. Li, Y. Yang, G. Li, B. Chen, W. Hu, Plasma Sci. Tech., 22, No. 7, 122–126 (2020).

18. A. Lang, D. Engelberg, N. T. Smith, D. Trivedi, O. Horsfall, A. Banford, P. A. Martin, P. Coffey, W. R. Bower, C. Walther, M. Weiß, H. Bosco, A. Jenkins, G. T. W. Law, J. Hazard Mater., 345, 114–122 (2018).

19. R. Gaudiuso, E. Ewusi-Annan, N. Melikechi, X. Sun, Be. Liu, L. F. Campesato, T. Merghoub, Spectrochim. Acta B: At. Spectrosc., 146, 106–114 (2018).

20. S. Schröder, K. Rammelkamp, F. Hanke, I. Weber, D. S. Vogt, S. Frohmann, S. Kubitza, U. Böttger, H. W. Hübers, J. Raman Spectrosc., 51, No. 9, 1667–1681 (2020).

21. E. C. Ferreira, José A. G. Neto, Débora M. B. P. Milori, E. J. Ferreira, J. M. Anzano, Spectrochim. Acta B: At. Spectrosc., 110, 96–99 (2015).

22. R. H. El-Saeid, M. Abdelhamid, M. A. Harith, Spectrochim. Acta B: At. Spectrosc., 116, 1–7 (2016).

23. Q. Wang, G. Teng, C. Li, Y. Zhao, Z. Peng, J. Hazard Mater., 369, 423–429 (2019).

24. A. Jabbar, M. Akhtar, S. Mahmood, R. Ahmed, M. A. Baig, Anal. Lett., 53, No. 8, 1328–1341 (2020).

25. X. Cama-Moncunill, M. M. Keszycka, P. J. Cullen, C. Sullivan, M. P. Casado-Gavalda, Food Chem., 309, 125754 (2020).

26. Y. Tian, Q. Chen, Y. Lin, Y. Lu, Y. Li, H. Lin, Spectrochim. Acta B: At. Spectrosc., 175, 106027 (2021).

27. A. A. Pervin, S. Banu, B. Scott R, P. Kamaranga, T. Michael, A. Hakan, B. İ. Hakkı, J. Sci. Food Agric., 101, No. 3, 1076–1084 (2020).

28. V. C. Costa, D. V. Babos, F. W. B. Aquino, A. Virgílio, F. A. C. Amorim, E. R. Pereira-Filho, Food Anal. Methods, 11, No. 7, 1886–1896 (2018).

29. H. M. Velioglu, B. Sezer, G. Bilge, S. E. Baytur, I. H. Boyac, Meat Sci., 138, 28–33 (2018).

30. B. Sezer, G. Bilge, A. Berkkan, U. Tamer, I. H. Boyaci, Food Chem., 240, 84–89 (2018).

31. Y. Liu, X. Gao, X. Jiang, H. Gao, X. Lin, Y. Zhang, Y. Zheng, Spectrosc. Spectr. Anal., 40, No. 9, 2815–2820 (2020).

32. L. Wang, T. Liu, Y. Chen, Y. Sun, Z. Xiu, Chin. J. Biotech., 33, No. 1, 68–78 (2017).


Review

For citations:


Ding Q., Yao M., Wu Sh., Zeng M., Xue N., Wu D., Xu J. Quantitative Analysis of Al Inflour Products by Laser-Induced Breakdown Spectroscopy Combined with Partial Least Squares. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):548-554.

Views: 186


ISSN 0514-7506 (Print)