

Quantitative Analysis of Al Inflour Products by Laser-Induced Breakdown Spectroscopy Combined with Partial Least Squares
Abstract
Based on partial least squares (PLS) analysis, the effects of different smoothing points and different preprocessing methods on the accuracy and precision of the PLS model were compared and analyzed. The results show that the PLS quantitative model has the best effect when using 11-point smoothing combined with standard normal variables (SNVs) as the preprocessing method. The coefficients of determination (Rc2, Rp2) of the model training set and prediction set are 0.9900 and 0.9996, respectively. The root means square errors (RMSECV, RMSEP) are 11.7 and 5.23, respectively, and the average relative error of prediction is only 2.96%, which indicates a high prediction accuracy rate and accuracy. This work demonstrates that LIBS technology has broad application prospects for the quantitative detection of specific ingredients in flour products and provides a basis for the real-time monitoring and evaluation of food safety.
Keywords
About the Authors
Q. DingChina
Nanchang
M. Yao
China
Nanchang
Sh. Wu
China
Nanchang
M. Zeng
China
Nanchang
N. Xue
China
Nanchang
D. Wu
China
Nanchang
J. Xu
China
Nanchang
References
1. H. Cao, T. Wang, Y. Min, J. Yu, F. Xu, J. Food Prot., 80, No. 10, 523–531 (2017).
2. G. Ma, J. Ethnic Foods, 2, No. 4, 195–199 (2015).
3. P. A. Akin, B. Sezer, T. Sanal, H. Apaydin, H. Koksel, İ. H. Boyaci, J. Cereal Sci., 92, 102920 (2020).
4. F. Liu, C. Zhang, Z. Huang, P. Liu, D. Chen, J. Instrum. Anal., 38, No. 4, 390–395 (2019).
5. S. Akhtar, F. M. Anjum, M. Akbar Anjum, Food Res. Int., 44, No. 3, 652–659 (2010).
6. H. Hua, X. Jiang, S. Wu, Food Chem., 207, 1–5 (2016).
7. A. M. Abdulwahab, Y. A. A. Al-Magdashi, A. Meftah, D. A. Al-Eryani, A. A. Qaid, Chin. J. Phys., 60, 510–521 (2019).
8. S. Sarin, D. Julka, K. D. Gill, Mol. Cell. Biochem., 168, 95–100 (1997).
9. J. L. Greger, C. F. Powers, Toxicology, 76, No. 2, 119–132 (1992).
10. R. O. Oruko, J. N. Edokpayi, T. A. M. Msagati, N. T. Tavengwa, H. J. O. Ogola, G. Ijoma, J. O. Odiyo, Environ. Sci. Poll. Res. Int., 16, No. 7, 480–488 (2019).
11. C. J. Savelli, A. Bradshaw, P. B. Embarek, C. Mateus, Foodborne Pathogens and Disease, 16, No. 7, 480–488 (2019).
12. Z. Chen, T. Shen, J. Yao, W. Wang, F. Liu, X. Li, Y. He, Molecules (Basel, Switzerland), 24, No. 13, 2517 (2019).
13. J. M. R. Antoine, F. L. A. Hoo, C. N. Grant, Toxic. Rep., 4, 181–187 (2017).
14. S. Farahani, N. Eshghi, A. Abbasi, F. Karimi, E. S. Malekabad, M. Rezaei, Toxin Rev., 34, No. 2, 96–100 (2015).
15. R. Chekri, E. Le Calvez, J. Zinck, J. C. Leblanc, V. Sirot, M. Hulin, L. Noël, T. Guérin, J. Food Comp. Anal., 78, 108–120 (2019).
16. M. M. Keszycka, X. Cama-Moncunill, M. P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P. J. Cullen, C. Sullivan, Trends Food Sci. Tech., 65, 80–93 (2017).
17. X. Li, Y. Yang, G. Li, B. Chen, W. Hu, Plasma Sci. Tech., 22, No. 7, 122–126 (2020).
18. A. Lang, D. Engelberg, N. T. Smith, D. Trivedi, O. Horsfall, A. Banford, P. A. Martin, P. Coffey, W. R. Bower, C. Walther, M. Weiß, H. Bosco, A. Jenkins, G. T. W. Law, J. Hazard Mater., 345, 114–122 (2018).
19. R. Gaudiuso, E. Ewusi-Annan, N. Melikechi, X. Sun, Be. Liu, L. F. Campesato, T. Merghoub, Spectrochim. Acta B: At. Spectrosc., 146, 106–114 (2018).
20. S. Schröder, K. Rammelkamp, F. Hanke, I. Weber, D. S. Vogt, S. Frohmann, S. Kubitza, U. Böttger, H. W. Hübers, J. Raman Spectrosc., 51, No. 9, 1667–1681 (2020).
21. E. C. Ferreira, José A. G. Neto, Débora M. B. P. Milori, E. J. Ferreira, J. M. Anzano, Spectrochim. Acta B: At. Spectrosc., 110, 96–99 (2015).
22. R. H. El-Saeid, M. Abdelhamid, M. A. Harith, Spectrochim. Acta B: At. Spectrosc., 116, 1–7 (2016).
23. Q. Wang, G. Teng, C. Li, Y. Zhao, Z. Peng, J. Hazard Mater., 369, 423–429 (2019).
24. A. Jabbar, M. Akhtar, S. Mahmood, R. Ahmed, M. A. Baig, Anal. Lett., 53, No. 8, 1328–1341 (2020).
25. X. Cama-Moncunill, M. M. Keszycka, P. J. Cullen, C. Sullivan, M. P. Casado-Gavalda, Food Chem., 309, 125754 (2020).
26. Y. Tian, Q. Chen, Y. Lin, Y. Lu, Y. Li, H. Lin, Spectrochim. Acta B: At. Spectrosc., 175, 106027 (2021).
27. A. A. Pervin, S. Banu, B. Scott R, P. Kamaranga, T. Michael, A. Hakan, B. İ. Hakkı, J. Sci. Food Agric., 101, No. 3, 1076–1084 (2020).
28. V. C. Costa, D. V. Babos, F. W. B. Aquino, A. Virgílio, F. A. C. Amorim, E. R. Pereira-Filho, Food Anal. Methods, 11, No. 7, 1886–1896 (2018).
29. H. M. Velioglu, B. Sezer, G. Bilge, S. E. Baytur, I. H. Boyac, Meat Sci., 138, 28–33 (2018).
30. B. Sezer, G. Bilge, A. Berkkan, U. Tamer, I. H. Boyaci, Food Chem., 240, 84–89 (2018).
31. Y. Liu, X. Gao, X. Jiang, H. Gao, X. Lin, Y. Zhang, Y. Zheng, Spectrosc. Spectr. Anal., 40, No. 9, 2815–2820 (2020).
32. L. Wang, T. Liu, Y. Chen, Y. Sun, Z. Xiu, Chin. J. Biotech., 33, No. 1, 68–78 (2017).
Review
For citations:
Ding Q., Yao M., Wu Sh., Zeng M., Xue N., Wu D., Xu J. Quantitative Analysis of Al Inflour Products by Laser-Induced Breakdown Spectroscopy Combined with Partial Least Squares. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):548-554.