Studies on Spectrophotometric Approach for Analysis of Antiplatelet Therapeutic: Ticagrelor
Abstract
The present research investigates the spectrophotometric approach for the simple and rapid quantification of Ticagrelor in the pharmaceutical matrix using a mathematical filtration technique. The sodium lauryl sulphate (SLS) (5% w/v) eco-sustainable solvent was employed to enhance the spectral absorption of Ticagrelor as an alternative to polar organic solvents in Ticaspan® tablets without any interruption of excipients routinely used in the marketed preparation of the cited drug. Four new analytical spectroscopic approaches such as zero-order and zero-order-area under the curve, first-order, and first-order-area under the curve were formulated and addressed in association with a recommended protocol of the International Conference on Harmonization (ICH), i.e., Q2R1 to quantify the cited therapeutic at 251.20–265.40 nm extended spectral wavelength ranges of UV/Vis-spectrometer unit for 5–30 µg/mL concentration ranges. A comparative study was accomplished among novel experiments; there was no statistical variance between the findings resulting from the present research and those attained by the literature reports subsequently to statistical assessment.
About the Authors
A. S. PatilIndia
Department of Pharmaceutical Chemistry,
Shirpur
A. R. Gaware
India
Department of Pharmaceutical Chemistry,
Shirpur
S. R. Chaudhari
India
Department of Pharmaceutical Chemistry,
Shirpur
A. A. Shirkhedkar
India
Department of Pharmaceutical Chemistry,
Shirpur
S. B. Ganorkar
India
Department of Pharmaceutical Chemistry,
Shirpur
References
1. R. Teng, K. Butler, Eur. J. Clin. Pharm., 66, 487–496 (2010).
2. H. Zhang, J. Liu, L. Zhang, L. Kong, H. Yao, H. Sun, Bioorg. Med. Chem. Lett., 22, 3598–3602 (2012).
3. K. Yamauchi, T. Imai, M. Shimazawa, T. Iwama, H. Hara, Sci. Rep., 7, 1–10 (2017).
4. D. Pandya, M. Patel, R. Ghediya, A. Shah, R. Khunt, J. Chem. Pharm. Res., 8, 316–321 (2016).
5. N. Anil Kumar, P. R. Naga Swathi, D. Sharmila, S. K. Sharmila, A. K. M. Pawar, Der. Pharm. Lett., 8, 309–315 (2016).
6. P. Shyamalambica, M. V. Lakshmi, Int. J. Eng. Res. Technol., 7, 175–181 (2018).
7. L. M. Bueno, J. W. Manoel, C. F. A. Giordani, A. S. L. Mendez, N. M. Volpato, E. E. S. Schapoval, M. Steppe, C. V. Garcia, Eur. J. Pharm. Sci., 97, 22–29 (2017).
8. N. R. Wingert, J. B. Ellwanger, L. M. Bueno, C. Gobetti, C. V. Garcia, M. Steppe, E. E. Schapoval, Eur. J. Pharm. Sci., 118, 208–215 (2018).
9. D. D’cruz, A. Babu, E. Joshy, T. P. Aneesh, Int. J. Appl. Pharm., 9, 51–54 (2017).
10. J. Lagoutte-Renosi, B. Royer, V. Rabani, S. Davani, Molecules, 26, 278 (2021).
11. W. Zhong, X. Wang, L. Tang, L. Mai, X. P. Chen, G. He, Z. Zheng, S. Zhong, J. Anal. Toxic., 40, No. 6, 445–453 (2016).
12. V. K. Redasani, P. R. Patel, D. Y. Marathe, S. R. Chaudhari, A. A. Shirkhedkar, S. J. Surana, J. Chil. Chem. Soc., 63, 4126–4134 (2018).
13. J. Ermer, P. W. Nethercote, Method Validation in Pharmaceutical Analysis: A Guide to Best Practice, John Wiley & Sons (2014).
14. ICH, Q2 (R1), Validation of Analytical Procedures: Text and Methodology, ICH Harmonized Tripartite Guideline (2005).
15. M. R. Patil, S. B. Ganorkar, A. S. Patil, A. A. Shirkhedkar, S. J. Surana, Crit. Rev. Anal. Chem., 51, No. 3, 278–288 (2021).
16. S. R. Chaudhari, V. K. Salunkhe, H. S. Deore, A. A. Shirkhedkar, Sustainable Chem. and Pharm., 24, 100534 (2021).
17. S. R. Chaudhari, A. S. Patil, A. A. Shirkhedkar, Asian J. Pharm. Res., 8, 11–16 (2018).
Review
For citations:
Patil A.S., Gaware A.R., Chaudhari S.R., Shirkhedkar A.A., Ganorkar S.B. Studies on Spectrophotometric Approach for Analysis of Antiplatelet Therapeutic: Ticagrelor. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):836-844.