Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Synthesis, Characterization, and Phosphate Anion Recognition Properties of Triethylene Glycol Bridged Oligourea Receptors

Abstract

Two triethylene glycol bridged oligourea receptors R1 and R2 were synthesized and characterized by 1H NMR, FT-IR, melting-point method and elemental analysis. The recognition properties of PO43– were studied by naked eye recognition and UV-vis spectroscopy. The Job’s plot analysis confirmed that the receptor R1 and PO43– formed a complex at a molar ratio of 3:2 while the binding ratio of R2 to PO43– was 1:1. The R1 recognized PO43– with a complexing constant of 1.46×105 M–1, and the complex constant of R2 recognizing PO43– was 2.75×105 M–1. In addition, the hydrogen bond between R1 and R2 with PO43– was examined with the method of alcohol effect by adding competitive solvent ethanol to the DMSO system. Furthermore, the recognition of PO43– by R1 and R2 was investigated through competitive measurements by adding other anions with the same concentration to the system. This study provides a simple and fast method for phosphate anion recognition. 

About the Authors

Z. Yang
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources
Russian Federation

Xi’an, Shaanxi



J. Liu
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology
Russian Federation

Xi’an, Shaanxi



S. Sun
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology
Russian Federation

Xi’an, Shaanxi



X. Yu
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology
Russian Federation

Xi’an, Shaanxi



X. Liu
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources
Russian Federation

Xi’an, Shaanxi



S. Zhao
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources
Russian Federation

Xi’an, Shaanxi



Zh. Yang
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources
Russian Federation

Xi’an, Shaanxi



X. Jia
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources
Russian Federation

Xi’an, Shaanxi



References

1. Z. Fabiola, B. B. Sergio, S. Paula, C. Antonio, M. Pedro, Molecules, 22, 2273 (2017).

2. I. Ravikumar, P. Ghosh, Chem. Soc. Rev., 41, 3077–3098 (2012).

3. J. W. Steed, Chem. Soc. Rev., 38, 506–519 (2009).

4. J. L. Sessler, E. Katayev, G. D. Pantos, Y. A. Ustynyuk, Chem. Commun., 1276–1277 (2004).

5. P. D. Beer, Chem. Commun., 689–696 (1996).

6. N. Busschaert, C. Caltagirone, W. Rossom, P. A. Gale, Chem. Rev., 115, 8038–8155 (2015).

7. X. Wu, A. M. Gilchrist, P. A. Gale, Chem., 6, 1296–1309 (2020).

8. J. Zhao, D. Yang, X. Yang, B. Wu, Coord. Chem. Rev., 378, 415–444 (2018).

9. K. Bowman-James, Acc. Chem. Res., 38, 671–678 (2005).

10. A. E. Hargrove, S. Nieto, T. Zhang, V. E. Anslyn, Chem. Rev., 111, 6603–6782 (2011).

11. J. F. Kornecki, D. Carballares, R. Morellon-Sterling, Proc. Biochem., 95, 288–296 (2020).

12. S. Aoki, E. Kimura, Rev. Mol. Biotechnol., 90, 129–155 (2020).

13. C. Pinyorospathum, P. Rattanarat, S. Chaiyo, W. Siangproh, O. Chailapakul, Sensor. Actuat. B-Chem., 290, 226–232 (2019).

14. B. Liu, D. Yang, R. Zhao, R. Zhou, T. Ying, J. Zhang, J. Zhang, H. Wang, Dyes Pigments, 2016, 133, 127–131 (2016).

15. Y. Chen, K. Lo, Y. Wang, C. Chiu, C. Hu, Sci. Rep-uk., 10, 1 (2020).

16. H. Nawaz, B. Javeria, H. Munawar, N. Sadia, J. Mater. Res. Technol., 308 (2018).

17. M. An, B. Kim, H. Seo, A. Helal, H. Kim, Spectrochim. Acta A, 169, 87–94 (2016).

18. H. Xu, D. Yang, D. Jiang, H. Chen, Front. Chem., 7 (2019).

19. P. Smith, M. Reddington, C. Wilcox, Tetrahedron Lett., 33, 6085–6088 (1992).

20. C. R. Bondy, P. A. Gale, S. Loeb, J. Am. Chem. Soc., 126, 5030–5031 (2004).

21. V. Amendola, M. Boiocchi, B. Colasson, L. Fabbrizzi, Inorg. Chem., 45, 6138–6147 (2006).

22. B. P. Hay, T. K. Firman, B. Moyer, J. Am. Chem. Soc., 127, 1810–1819 (2005).

23. R. Li, Y. Zhao, S. Li, P. Yang, X. Huang, X. Yang, B. Wu, Inorg. Chem., 52, 5851–5860 (2013).

24. G. D. Kim, S. Bothra, S. K. Sahoo, H. J. Choi, J. Incl. Phenom. Macro., 95, 215–221 (2019).

25. V. Amendola, M. Boiocchi, B. Colasson, L. Fabbrizzi, Inorg. Chem., 45, 6138–6147 (2006).

26. L. M. Tsay, J. S. Shih, C. Wu, Analyst., 108, 1108–1113 (1987).

27. D. Duan, B. Su, Z. Bao, Y. Yang, Q. Ren, J. Supercrit. Fluid., 42–47 (2019).

28. M. Kazemabad, A. Verliefde, E. R. Cornelissen, A. D'Haese, J. Membrane Sci., 595, 117432 (2019).

29. Y. Wu, S. Zheng, Y. Ye, H. Guo, F. Yang, J. Photoch. Photobio. A., 412, 113219 (2021).

30. C. Huang, D. Zhang, J. Qu, X. Liu, Y. Liu, Aust. J. Chem., 70, 705–711 (2017).

31. T. Oshima, A. Suetsugu, Y. Baba, Anal. Chim. Acta, 674, 211–219 (2010).

32. G. V. Jancarlo, A. M. Ramón, S. O. Hisila, O. C. David, Supramol. Chem., 1–14 (2019).

33. R. Custelcean, Chem. Commun., 39, 295–307 (2008).

34. S. Wang, Z. Huang, A. Li, Y. Zhao, W. Zuo, Y. Li, H. Miao, J. Ma, W. Sun, X. Wang, L. Cao, B. Wu, C. Jia, Angew. Chem. Int. Ed., 60, 9573 (2021).

35. U. Manna, B. Portis, T. K. Egboluche, M. Nafis, M. A. Hossain, Front. Chem., 8, 575701 (2021).

36. D. Marquis, J. P. Desvergne, H. Bouas-Laurent, J. Org. Chem., 60, 7984–7996 (1995).

37. Y. Chen, G. Baker, J. Org. Chem., 64, 6870–6873 (1999).

38. G. C. Eastmond, J. Paprotny, Polymer., 43, 3455–3468 (2002).

39. L. Ji, Z. Yang, Y. Zhao, S. Meng, B. Wu, Chem. Commun., 52, 7310–7313 (2016).

40. K. Rouzi, A. Abulikemu, J. Zhao, B. Wu, RSC Adv., 7, 50920–50927 (2017).

41. A. Okudan, S. Erdemir, O. Kocyigit, J. Mol. Struct., 1048, 392–398 (2013).

42. J. S. Kim, O. J. Shon, S. H. Yang, J. Org. Chem., 67, 6514–6518 (2002).

43. J. S. Renny, L. L. Tomasevich, E. H. Tallmadge, D. B. Collum, Angew. Chem., 52, 11998–12013 (2013).

44. Z. Yang, C. Li, X. Liu, S. Zhao, X. Chen, Z. Anorg. All. Chem., 646, 1324–1330 (2020).

45. Z. Yang, S. Sun, Y. Liu, X. Liu, S. Zhao, Z. Zhang, X. Chen, Z. Yang, X. Jia, Indian J. Chem., 58, 1302–1310 (2019).

46. R. Sakai, S. Okade, E. B. Barasa, R. Kakuchi, M. Ziabka, S. Umeda, K. Tsuda, T. Satoh, T. Kakuchi, Macromolecules, 43, 7406–7411 (2010).

47. J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem., 97, 457–470 (1993).

48. B. Valeur, J. Pouget, J. Bourson, J. Phys. Chem., 96, 6545–6549 (1992).

49. A. Gutiérrez, M. Alavianmehr, S. Hosseini, R. Ahmadi, S. Aparicio, J. Mol. Liq., 300, 112331 (2019).

50. Z. Yang, Y. Wang, X. Liu, R. T. Vanderlinden, P. J. Stang, R. Ni, X. Li, J. Am. Chem. Soc., 142, 13689–13694 (2020).

51. K. Dharmalingam, Ramachandran, P. Sivagurunathan, Main Group Chem., 273–278 (2005).


Review

For citations:


Yang Z., Liu J., Sun S., Yu X., Liu X., Zhao S., Yang Zh., Jia X. Synthesis, Characterization, and Phosphate Anion Recognition Properties of Triethylene Glycol Bridged Oligourea Receptors. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):898.

Views: 163


ISSN 0514-7506 (Print)