Optical and Spectral Properties of Dispersed ZnO p-n-Octyloxy Benzoic Acid Liquid Crystalline Compounds
Abstract
ZnO nanoparticles (NPs) are used in many electro-optical applications due to their special characteristic properties. NPs improve the optical parameters of liquid crystalline molecules. The main theme of this paper focuses on the homogeneous dispersion of ZnO NPs in small concentrations, i.e. 1, 1.5, 2, and 2.5 wt% in liquid crystal compounds of p-n-octyloxy benzoic acid (8oba). Scanning electron microscopy is used to ascertain the morphology of the dispersed ZnO NPs in liquid crystal compounds. Polarizing optical microscopy and differential scanning calorimetry are used to determine the phase transition temperatures of these compounds. The wedge-shaped modified spectrometer is used to determine the refractive indices at different wavelengths, visually 460, 500, 570, and 635 nm. The values of the birefringence (δn) and order parameter (S) are enhanced with the dispersion of increasing concentrations of ZnO NPs.
About the Authors
K. SajiniIndia
Department of Chemistry,
Machilipatnam
P. Jayaprada
India
Department of Physics,
Vijayawada
P. Pardhasaradhi
India
Guntur
B.T.P. Madhav
India
Guntur
M. C. Rao
India
Department of Physics,
Vijayawada
D. R. S. Reddy
India
Department of Chemistry,
Machilipatnam
R. K. N. R. Manepalli
India
Department of Physics,
Visakhapatnam
References
1. S. Grollau, N. L. Abbott, J. J. de Pablo, Phys. Rev., E67, 051703 (2003).
2. C. J. Loudet, P. Barois, P. Poulin, Nature, 407, 611–613 (2000).
3. D. Andrienko, M. P. Allen, G. Skacej, S. Zumer, Phys. Rev., E65, 041702 (2000).
4. S. J. Woltmann, G. D. Jay, G. P. Crawford, Nature Mater., 6, 929–938 (2007).
5. H. Eskalen, S. Ozgan, U. Alver, S. Kerli, Acta Phys. Pol. A, 127, 756–760 (2015).
6. K. K. Vardanyan, E. D. Palazzo, R. D. Walton, Liq. Cryst., 38, 709–715 (2011).
7. W. T. Chen, P. S. Chen, C. Y. Chao, Jpn. J. Appl. Phys., 48, 015006 (2009).
8. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, J. West, Appl. Phys. Lett., 82, 1917–1919 (2003).
9. W. Lee, C. Y. Wang, Y. C. Shih, Appl. Phys. Lett., 85, 513–515 (2004).
10. C. W. Lee, W. P. Shih, Mater. Lett., 64, 466–468 (2010).
11. A. Maleki, M. H. M. Ara, F. Saboohi, Phase Transit., 90, 371–379 (2016).
12. M. Rahman, W. Lee, J. Phys. D: Appl. Phys., 42, 063001 (2009).
13. A. K. Misra, A. K. Srivastava, J. P. Shukla, R. Manohar, Phys. Scr., 78, 065602 (2008).
14. J. L. Gomez, O. Tigli, J. Mater. Sci., 48, No. 2, 612–624 (2013).
15. H. Jiang, N. Toshima, Chem. Lett., 38, 566–567 (2009).
16. A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, J. Appl. Phys., 110, 064111 (2011).
17. S. Supreet, S. Kumar, K. Raina, R. Pratibha, Liq. Cryst., 40, No. 2, 228–236 (2013).
18. N. Pushpavathi, K.L. Sandhya, S. Krishna Prasad, J. Mol. Liq., 302, 112571 (2020).
19. D. Jayoti, P. Malik, S. Krishna Prasad, J. Mol. Liq., 250, 381–387 (2018).
20. A. Sharma, P. Malik Ravindra Dhar, Pankaj Kumar, Bull. Mater. Sci., 42, 215–227 (2019).
21. A. K. Misra, P. K. Tripathi, K. K. Pandey, B. P. Singh, R. Manohar, J. Dis. Sci. Tech., 41, 2136–2142 (2019).
22. E. Mavrona, U. Chodorow, M. E. Barnes, J. Parka, N. Palka, S. Saitzek, J.-F. Blach, V. Apostolopoulos, AIP Adv., 5, 077143 (2015).
23. R. G. Pathak, A. Srivastava, J. Herman, R. Manohar, J. Mol. Liq., 255, 93–101 (2018).
24. K. V. Surya Narayana Raju, S. Salma Begum, B. Dharma Sagar, Shaik Babu, Rasayan, J. Chem., 10, No. 1, 37–45 (2017).
25. R. K. N. R. Manepalli, G. Giridhar, P. Pardhasaradhi, P. Jayaprada, M. Tejaswi, K. Sivaram, Ch. Mohan Kumara, V. G. K. M. Pisipati, Mater. Today Proc., 5, 2666–2676 (2018).
26. P. Jayaprada, P. Pardhasaradhi, B. T. P. Madhav, G. Giridher, M. C. Rao, R. K. N. R. Manepalli, V. G. K. M. Pisipati, Optics, 689, 10–33 (2019).
27. J. I. Goldstein, Dale E. Newbury, P. Echlin, D. C. Joy, C. Fiori, E. Lifshin, Plenum Press, New York (1981).
28. B. J. Zywucki, W. Kuczynski, IEEE Trans., 8, No. 3, 512–515 (2001).
29. W. Kuczyński, B. Żywucki, J. Małecki, Mol. Crys. Liq. Cryst., 381, No. 1, 1–19 (2002).
30. M. F. Vuks, Opt. Spectrosc., 20, 644–651 (1966).
31. R. G. Horn, T. E. Faber, Proc. Royal Soc. Mat. Phys. Eng. Sci., 368, 199–223 (1733).
32. A. Kumar, Acta Phys. Polonica A, 112, No. 6, 1213–1221 (2007).
33. H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, D. S. Seo, Liq. Cryst., 38, 871–875 (2011).
34. G. Pathaka, R. Katiyara, K. Agraharia, A. Srivastavaa, R. Dabrowskib, K. Garbatb, R. Manohara, OptoElectron. Rev., 26, 11–18 (2018).
35. H. Eskalen Özgan, O. Alver, S. Kerli, Acta Phys. Polonica A, 127, 756–760 (2015).
Review
For citations:
Sajini K., Jayaprada P., Pardhasaradhi P., Madhav B., Rao M.C., Reddy D., Manepalli R. Optical and Spectral Properties of Dispersed ZnO p-n-Octyloxy Benzoic Acid Liquid Crystalline Compounds. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):900.