Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Multi-Element Determination of Ferrochromium by Energy-Dispersive X-Ray Fluorescence Spectrometry Based on Design of Experiments

Abstract

An innovative method for the simultaneous determination of Cr, Fe, Si, Mn, V, Ti, P, and S in ferrochromium was developed based on the powder compression method coupled with energy dispersive X-ray fluorescence spectrometry. The measurement conditions, current, voltage, analytical line, filter, and detector mode were optimized. The optimal sample quality, binder dosage, and tablet pressure were predicted by MINITAB software using a design of experiments that simultaneously investigated the combined effect of the different factors. The matrix and overlapping effects of the element spectrum were corrected using Epslion3 software. The results indicated that the element working curves had a good linear relationship for the selected concentration range, and the correlation coefficient of the eight elements was between 0.9912 and 0.9997. The accuracy of the proposed method was confirmed by analyzing a ferrochromium-certified reference material that had not been used in the linear regression, which ranged from 0.08 to 5.29%. The proposed technique was able to determine the Cr, Fe, Si, Mn, V, Ti, P, and S content of ferrochromium with excellent accuracy and precision, and it was superior to reported methods. 

About the Authors

X. Q. Li
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences; Qinghai Engineering and Technology Research Center of Salt Lake Resources Development; University of Chinese Academy of Sciences
Russian Federation

Xining;

Beijing



B. Li
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences; Qinghai Engineering and Technology Research Center of Salt Lake Resources Development
Russian Federation

Xining



Y. P. Dong
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences; Qinghai Engineering and Technology Research Center of Salt Lake Resources Development
Russian Federation

Xining



D. D. Gao
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences; Qinghai Engineering and Technology Research Center of Salt Lake Resources Development
Russian Federation

Xining



W. Li
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences
Russian Federation

Xining



H. T. Feng
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences; Qinghai Engineering and Technology Research Center of Salt Lake Resources Development
Russian Federation

Xining



References

1. V. A. Maslyuk, R. V. Yakovenko, O. A. Potazhevskaya, A. A. Bondar, Powder Metall. Met. Ceram., 52, 47–57 (2013).

2. N. Sasaguri, K. Yamamoto, Y. Yokomizo, Y. Matsubara, Mater. Trans., 60, 2537–2541 (2019).

3. J. Wang, G. Hu, Z. Peng, K. Du, Trans. Nonferrous Met. Soc. China, 25, 3820–3826 (2015).

4. B. Lu, C. Zhang, Z. Guo, F. Yang, H. Y. Wang, A. Volinsky, Y. Li, J. Mater. Eng. Perform., 28, 5361–5368 (2019).

5. P. Kumar, N. Sahu, A. Roshan, B. N. Rout, S. K. Tripathy, Min. Proc. Ext. Met. Rev., 1–11 (2021).

6. B. Li, P. Han, B. Zhang, H. T. Feng, W. Li, Y. P. Dong, J. Hazard Mater., 387, 121699 (2020).

7. Z. L. Gu, Shandong Metall., 43, 48–49 (2021).

8. D. X. Hu, K. Xiao., X. D. Wang, Z. K. Wang, M. Liu, Q. B. Li, Rock Miner. Analysis, 33, 208–211 (2014).

9. I. I. Chernikova, K. V. Tumneva, T. V. Bakaldina, T. N. Ermolaevaa, Inorg. Mater., 56, 1384–1390 (2020).

10. I. Hlaváček, I. Hlaváčková, Anal. At. Spectrom., 6, 535–540 (1991).

11. I. I. Chernikova, K. Y. Tumneva, T. Y. Bakaldina, T. N. Ermolaeva, Ind. Lab. (Diagn. Mater.), 85, 11–17 (2019).

12. R. Mittal, P. Rao, P. A. Kaur, J. Appl. Spectrosc., 84, 1131–1138 (2018).

13. Y. L. Liu, Q. X. Zhang, J. Zhang, H. T. Bai, L. Q. Ge, Nucl. Sci. Tech., 30, 1–11 (2019).

14. A. A. Shaltout, M. M. Dabi, M. M. Ibrahim, S. Ahmed, E. B. Essam, Trace Elem. Res., 195, 417–426 (2020).

15. P. Rao, R. Mittal, J. Appl. Spectrosc., 87, 1185–1195 (2021).

16. M. F. Gülcan, B. D. Karahan, S. J. Gürmen, Mater. Res. Technol., 9, 14103–14115 (2020).

17. A. G. Coedo, T. Dorado, C. J. Rivero, G. C. Isabel, J. Anal. At. Spectrom., 8, 1023–1027 (1993).

18. G. Wang, J. Diao, L. Liu, M. Li, H. Y. Li, G. Li, B. Xie, J. Cleaner Prod., 237, 117832 (2019).

19. M. Büyükyıldıza, E. Boydaşb, M. Kurudirekb, E. ÖzOrhanc, Instrum. Exp. Tech., 60, 584–588 (2017).

20. N. X. Gao, J. Appl. Spectrosc., 87, 326–332 (2020).

21. E. Hazir, E. S. Erdinler, K. H. Koc, J. For. Res., 29, 1423–1434 (2018).

22. G. Kishore, A. Parthiban, A. R. Sivaram, V. Vijayan, Mater. Today: Proc., 37, 3256–3261 (2021).

23. M. G. Arafa, B. M. Ayoub, Sci. Rep., 7, 1–15 (2017).

24. J. F. V. De, J. S. Almeida, V. A. Lemos, M. C. Olívia, S. G. Karina, S. G. Leonardo, Talanta, 222, 121514 (2021).

25. X. Q. Li, H. T. Feng, B. Li, D. D. Gao, B. Zhang, Y. P. Dong, W. Li, J. Salt Lake Res., 29, 102–108 (2021).

26. T. R. Tavares, J. P. Molin, L. C. Nunes, E. E. Alves, F. L. Melquiades, H. W. Carvalho, A. Mouazen, Remote Sens., 12, 963 (2020).

27. P. Bachiega, A. E. De, J. M. Salgado, M. A. Z. Arruda, E. L. Lehmann, M. C. Morzelle, H. W. P. Carvalho, Food Anal. Method, 12, 1520–1527 (2019).


Review

For citations:


Li X.Q., Li B., Dong Y.P., Gao D.D., Li W., Feng H.T. Multi-Element Determination of Ferrochromium by Energy-Dispersive X-Ray Fluorescence Spectrometry Based on Design of Experiments. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):902.

Views: 173


ISSN 0514-7506 (Print)