Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Classification of Coronavirus Spike Proteins by Deep-Learning-Based Raman Spectroscopy and Its Interpretative Analysis

Abstract

The outbreak of COVID-19 has spread worldwide, causing great damage to the global economy. Raman spectroscopy is expected to become a rapid and accurate method for the detection of coronavirus. A classification method of coronavirus spike proteins by Raman spectroscopy based on deep learning was implemented. A Raman spectra dataset of the spike proteins of five coronaviruses (including MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-HKU1, and HCoV-OC43) was generated to establish the neural network model for classification. Even for rapidly acquired spectra with a low signal-to-noise ratio, the average accuracy exceeded 97%. An interpretive analysis of the classification results of the neural network was performed, which indicated that the differences in spectral characteristics captured by the neural network were consistent with the experimental analysis. The interpretative analysis method provided a valuable reference for identifying complex Raman spectra using deep-learning techniques. Our approach exhibited the potential to be applied in clinical practice to identify COVID-19 and other coronaviruses, and it can also be applied to other identification problems such as the identification of viruses or chemical agents, as well as in industrial areas such as oil and gas exploration. 

About the Authors

W. Mo
Laser Fusion Research Center at China Academy of Engineering Physics; Tsinghua University
China

Mianyang;

Department of Engineering Physics, Beijing



J. Wen
Laser Fusion Research Center at China Academy of Engineering Physics; Tsinghua University
China

Mianyang;

Department of Engineering Physics, Beijing



J. Huang
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



Y. Yang
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



M. Zhou
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



S. Ni
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



W. Le
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



L. Wei
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



D. Qi
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



S. Wang
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



J. Su
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



Y. Wu
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



W. Zhou
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



K. Du
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



X. Wang
Tsinghua University
China

Department of Engineering Physics, 

Beijing



Z. Zhao
Laser Fusion Research Center at China Academy of Engineering Physics
China

Mianyang



References

1. F. Cui, H. S. Zhou, Biosens. Bioelectron., 165, 112349 (2020).

2. J. Huang, J. Wen, M. Zhou, S. Ni, W. Le, G. Chen, L. Wei, Y. Zeng, D. Qi, M. Pan, Anal. Chem., 93, No. 26, 9174–9182 (2021).

3. M. Asif, M. Ajmal, G. Ashraf, N. Muhammad, A. Aziz, T. Iftikhar, J. Wang, H. Liu, Curr. Opin. Electrochem., 23, 174–184 (2020).

4. M. Shen, Y. Zhou, J. Ye, A. A. A. Al-Maskri, Y. Kang, S. Zeng, S. Cai, J. Pharm. Anal., 10, 97–101 (2020).

5. V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brünink, J. Schneider, M. L. Schmidt, Eurosurveillance, 25, 2000045 (2020).

6. M. N. Esbin, O. N. Whitney, S. Chong, A. Maurer, X. Darzacq, R. Tjian, Rna, 26, 771–783 (2020).

7. J. Huggett, K. Dheda, S. Bustin, A. Zumla, Genes Immun., 6, 279–284 (2005).

8. M. L. Wong, J. F. Medrano, Biotechniques, 39, 75–85 (2005).

9. D. Jacofsky, E. M. Jacofsky, M. Jacofsky, J. Arthroplasty, 35, S74–S81 (2020).

10. Q. Lin, D. Wen, J. Wu, L. Liu, W. Wu, X. Fang, J. Kong, Anal. Chem., 92, 9454–9458 (2020).

11. G. Liu, J. F. Rusling, ACS Sens., 6, 593–612 (2021).

12. C.-S. Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeffrey, M. Holodniy, N. Banaei, A. A. Saleh, S. Ermon, J. Dionne, Nat. Commun, 10, 1–8 (2019).

13. W. Lee, A. T. Lenferink, C. Otto, H. L. Offerhaus, J. Raman Spectrosc., 51, 293–300 (2020).

14. D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh, O. Abiona, B. S. Graham, J. S. McLellan, Science, 367, 1260–1263 (2020).

15. Z. Li, A. C. Tomlinson, A. H. Wong, D. Zhou, M. Desforges, P. J. Talbot, S. Benlekbir, J. L. Rubinstein, J. M. Rini, eLife, 8, e51230 (2019).

16. S. Abdul-Rasool, B. C. Fielding, Open Virol. J., 4, 76 (2010).

17. J. R. St-Jean, H. Jacomy, M. Desforges, A. Vabret, F. Freymuth, P. J. Talbot, J. Virol., 78, 8824–8834 (2004).

18. P. C. Woo, S. K. Lau, C.-M. Chu, K.-H. Chan, H.-W. Tsoi, Y. Huang, B. H. Wong, R. W. Poon, J. J. Cai, W.-K. Luk, J. Virol., 79, 884–895 (2005).

19. C. Drosten, S. Günther, W. Preiser, S. Van Der Werf, H.-R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, N. Engl. J. Med., 348, 1967–1976 (2003).

20. R. J. De Groot, S. C. Baker, R. S. Baric, C. S. Brown, C. Drosten, L. Enjuanes, R. A. Fouchier, M. Galiano, A. E. Gorbalenya, Z. A. Memish, J. Virol., 87, 7790–7792 (2013).

21. S. Su, G. Wong, W. Shi, J. Liu, A. C. Lai, J. Zhou, W. Liu, Y. Bi, G. F. Gao, Trends Microbiol., 24, 490–502 (2016).

22. M. M. Kesheh, P. Hosseini, S. Soltani, M. Zandi, Rev. Med. Virol., e2282 (2021).

23. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE, 86, 2278–2324 (1998).

24. K. He, X. Zhang, S. Ren, J. Sun, Proc. IEEE Conf. Comput. Vision Pattern Recognit., 770–778 (2016).

25. D. X. Liu, J. Q. Liang, T. S. Fung, Encycl. Virol., 428 (2021).

26. A. B. Gussow, N. Auslander, G. Faure, Y. I. Wolf, F. Zhang, E. V. Koonin, Proc. Natl. Acad. Sci. USA, 117, 15193–15199 (2020).

27. H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng, Z. Zhang, Z. Wu, Cell, 183, 730–738, e713 (2020).

28. C. Liu, Y. Yang, Y. Gao, C. Shen, B. Ju, C. Liu, X. Tang, J. Wei, X. Ma, W. Liu, bioRxiv (2020).

29. K. Simonyan, A. Vedaldi, A. Zisserman, arXiv preprint arXiv, 1312.6034 (2013).

30. C. Carlomagno, D. Bertazioli, A. Gualerzi, S. Picciolini, P. Banfi, A. Lax, E. Messina, J. Navarro, L. Bianchi, A. Caronni, Sci. Rep., 11, 1–13 (2021).

31. H. Jinglin, Z. Minjie, L. Wei, C. Guo, N. Shuang, N. Gao, L. Zeyu, Z. Zongqing, H. Zhibing, L. Bo, Qiangjiguang Yu Lizishu, 32, 069001-069002 (2020).

32. J. E. Sanchez, S. A. Jaramillo, E. Settles, J. J. V. Salazar, A. Lehr, J. Gonzalez, C. R. Aranda, H. R. Navarro-Contreras, M. O. Raniere, M. Harvey, RSC Adv., 11, 25788–25794 (2021).

33. G. Yin, L. Li, S. Lu, Y. Yin, Y. Su, Y. Zeng, M. Luo, M. Ma, H. Zhou, L. Orlandini, J. Raman Spectrosc., 52, 949–958 (2021).


Review

For citations:


Mo W., Wen J., Huang J., Yang Y., Zhou M., Ni S., Le W., Wei L., Qi D., Wang S., Su J., Wu Y., Zhou W., Du K., Wang X., Zhao Z. Classification of Coronavirus Spike Proteins by Deep-Learning-Based Raman Spectroscopy and Its Interpretative Analysis. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):903.

Views: 156


ISSN 0514-7506 (Print)