Nanosensor Composed of N-Doped Carbon Dots for Highly Selective Detection of Riboflavin
Abstract
Boletus brunneissimus Chiu carbon dots (Bb-CDs) with good fluorescence performance were successfully prepared by the hydrothermal method (200°C, 12 h) using the edible fungus Boletus brunneissimus Chiu as the carbon source. The Bb-CD fluorescent nanoprobe was applied to detection of riboflavin, and its fluorescence-quenching mechanism was investigated. The structure and optical properties of the Bb-CDs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet–visible spectroscopy. In the riboflavin concentration (C) range of 0–50 μM, the fluorescence-quenching effect of the Bb-CDs (y) showed a good linear relationship with the riboflavin concentration. The linear equation was y = 0.00304C + 0.02151 (R2 = 0.99497), and the detection limit was 45 nM. Therefore, the Bb-CDs showed high detection sensitivity and a low detection limit for riboflavin. Moreover, the fluorescence-quenching mechanism of the Bb-CDs by riboflavin belonged to the fluorescent inner filter effect. The Bb-CDs were successfully used as a fluorescent nanoprobe to detect riboflavin in actual fruit samples, which provides a new concept for application of CDs to biological detection.
About the Authors
L. MengRussian Federation
Bijie
Z. Xia
Russian Federation
Bijie
Y. Zhang
Russian Federation
Bijie
Y. Tan
Russian Federation
Bijie
S. Yang
Russian Federation
Bijie
References
1. X. Zhang, M. Jiang, N. Niu, et al., Chem. Sus. Chem., 11, No. 1, 11–24 (2018).
2. L. Zheng, Y. Chi, Y. Dong, et al., J. Am. Chem. Soc., 131, No. 13, 4564–4565 (2009).
3. A. B. Bourlinos, D. Petridis, J. Mater. Sci., 38, No. 5, 959–963 (2003).
4. Y. Ding, J. Zheng, J. Wang, et al., J. Mater. Chem. C, 7, No. 6, 1502–1509 (2019).
5. Q. Yang, J. Duan, W. Yang, et al., Appl. Surface Sci., 1079–1085 (2018).
6. J. B. Essner, J. A. Kist, L. Polo-Parada, et al., Chem. Mater., 30, No. 6, 1878–1887 (2018).
7. J. Zhu, H. Shao, X. Bai, et al., Nanotechnology, 29, No. 24, 245702 (2018).
8. K. P. Ji, Y. Cao, C. X. Zhang, et al., Mycologic. Prog., 10, 293–300 (2011).
9. C. X. Zhang, M. X. He, Y. Cao, et al., Mycologia, 107, No. 1, 12–20 (2015).
10. R. Sanmee, B. Dell, P. Lumyong, et al., Food Chem., 82, No. 4, 527–532 (2003).
11. P. Heinemann, J. Rammeloo, Mycotaxon, 15, 384–404 (1982).
12. R. Wading, Mycologic. Res., 105, No. 12, 1440–1448 (2001).
13. V. M. Bandala, L. Montoya, D. Jarvio, Persoonia, 18, No. 3, 365–380 (2004).
14. P. S. Barbara, New Zealand J. Botany, 25, No. 2, 185–215 (1987).
15. Z. Sun, X. Li, Y. Wu, et al., New J. Chem., 42, No. 6, 4603–4611 (2018).
16. F. Yuan, T. Yuan, L. Sui, et al., Nature Commun., 9, No. 1, 1–11 (2018).
17. K. Jiang, Y. Wang, X. Gao, et al., Angew. Chem. Int. Ed., 57, No. 21, 6216–6220 (2018).
18. Z. Wei, B. Wang, Y. Liu, et al., New J. Chem., 43, No. 2, 718–723 (2019).
19. K. Kim, J. Kim, J. Nanosci. Nanotech., 18, No. 2, 1320–1322 (2018).
20. L. Liu, H. Gong, D. Li, et al., J. Nanosci. Nanotech., 18, No. 8, 5327–5332 (2018).
21. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, et al., Biosens. Bioelectron., 99, 303–311 (2018).
22. B. T. Hoan, P. D. Tam, V. H. Pham, J. Nanotech. (2019).
23. Y Song, X Yan, Z Li, et al., J. Mater. Chem. B, 6, No. 19, 3181–3187 (2018).
24. A. K. Singh, V. K. Singh, M. Singh, et al., J. Photochem. Photobiol. A: Chem., 376, 63–72 (2019).
25. M. Shahshahanipour, B. Rezaei, A. A. Ensafi, et al., Mater. Sci. Eng. C, 98, 826–833 (2019).
26. S. K. Bajpai, A. D’Souza, B. Suhail, Int. Nano Lett., 9, No. 3, 203–212 (2019).
27. S. Nandi, M. Ritenberg, R. Jelinek, Analyst, 140, No. 12, 4232–4237 (2015).
28. W. Gao, S. Thamphiwatana, P. Angsantikul, et al., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 6, No. 6, 532–547.
29. A. Rodriguez-Rojas, J. Rodriguez-Beltran, A. Couce, J. Blázquez., Int. J. Med. Microbiol., 303, No. 6–7, 293–297 (2013).
30. L. Xiao, H. Sun, Nanoscale Horizons, 3, No. 6, 565–597 (2018).
31. H. Ding, J.-S. Wei, N. Zhong, et al., Langmuir, 33, No. 44, 12635–12642 (2017).
32. V. Sharma, P. Tiwari, S. M. Mobin, J. Mater. Chem. B, 5, No. 45, 8904–8924 (2014).
33. L. Wang, H. S. Zhou, Anal. Chem., 86, No. 18, 8902–8905 (2014).
34. D. B. Mccormick, Nutr. Rev., 30, No. 4, 75–79 (1972).
35. M. Kilic, B. Ensing, Phys. Chem. Chem. Phys., 16, No. 35, 18993–19000 (2014).
36. C. J. Bates, A. M. Prentice, A. A. Paul, et al., Trans. R Soc. Trop. Med. Hyg., 76, No. 2, 253–258 (1982).
37. P. A. Prasad, M. S. Bamji, A. V. Lakshmi, et al., Nutr. Res., 10, No. 3, 275–281 (1990).
38. M. J. Soares, K. Satyanarayana, M. S. Bamji, et al., Br. J. Nutr., 69, No. 2, 541–551 (1993).
39. J. Chen, B. Q. Li, Y. Q. Cui, et al., J. Food Compos. Anal., 41, 122–128 (2015).
40. I. Márqucz-Sillero, S. Cárdenas, M. Valcárcel, J. Chromatogr. A, 1313, 253–258 (2013).
41. J. Eiff, Y. B. Monakhova, B. Diehl, J. Agric. Food Chem., 63, No. 12, 3135–3143 (2015).
Review
For citations:
Meng L., Xia Z., Zhang Y., Tan Y., Yang S. Nanosensor Composed of N-Doped Carbon Dots for Highly Selective Detection of Riboflavin. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):904.