Detection of Zinc in Food Based on High-Stability Zinc Coordination Supramolecular Self-Assembled Polymer Enhanced Resonance Light Scattering
Abstract
The resonance light scattering method was used to study the coordination-driven self-assembly reaction of zinc with a bipolar tetradentate ligand and a bipolar bidentate ligand to form a supramolecular polymer. The bipolar tetradentate ligand was N,N’-bis(pyridoxal phosphate)-o-tetraminobiphenyl synthesized by the reaction of pyridoxal phosphate with biphenyltetramine, and the bipolar bidentate ligand was bis-phenanthroline-glutaraldehyde synthesized by the reaction of glutaraldehyde with 5-aminophenanthroline. The formation of the supramolecular polymer causes signal enhancement of resonance light scattering. Based on this, we established a new method for the determination of zinc by resonance light scattering. Under optimized experimental conditions, the zinc concentration in the range of 0.3–30 ng/mL showed a good linear relationship with the resonance light scattering intensity of the system. The detection limit of the method is 0.1 ng/mL. Using this method to determine the content of zinc in food, the recovery rate of standard addition is between 95 and 107%, and the relative standard deviation is less than 3.68%.
About the Authors
J. YangChina
Hengyang
Q. Li
China
Hengyang
C. Xu
China
Hengyang
Y. Li
China
Hengyang
L. Nie
China
Hengyang
C. Liu
China
Hengyang
X. Xiao
China
Hengyang, Hunan Province
C. Nie
China
Hengyang
X. Zhou
China
Hengyang
L. Liao
China
Hengyang
References
1. J. Wang, Elastic Light Scattering Spectrometry, 241 (2018).
2. T. Wang, F. Rong, Y. Tang, M. Li, T. Feng, Q. Zhou, P. Li, W. Huang, Prog. Polymer Sci., 101389 (2021).
3. J. Yan, W. He, X. Li, W. You, X. Liu, S. Lin, J. Chen, Y. Zhao, Y. Zhang, F. Ji, Chem. Eng. J., 416, 129141 (2021).
4. F. S. Al-Fartusie, S. N. Mohssan, Indian J. Adv. Chem. Sci., 5, No. 3, 127–136 (2017).
5. P. Trumbo, A. A. Yates, S. Schlicker, M. Poos, J. Am. Dietetic Ass., 101, No. 3, 294–301 (2001).
6. N. Saha, M. S. Rahman, M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, J. Environ. Man., 185, 70–78 (2017).
7. N. Aksuner, E. Henden, I. Yilmaz, A. Cukurovali, Dyes Pigments, 83, No. 2, 211–217 (2009).
8. B. Fang, Y. Liang, F. Chen, Talanta, 119, 601–605 (2014).
9. D. Zhen, S. Shi, C. Gao, Q. Kang, X. Xiao, C. A. Grimes, Q. Cai, Microchim. Acta, 187, No. 10, 1–10 (2020).
10. H.-S. Kim, H.-S. Choi, Talanta, 55, No. 1, 163–169 (2001).
11. S. Mukhopadhyay, S. Chakraborty, P. B. S. Bhadoria, B. Li, D. C. Weindorf, Geoderma Regional, 20, e00249 (2020).
12. H. D. E. Uygun, M. Antep, M. N. Demir, M. Merdivan, Chem. Papers, 74, No. 10, 3399–3408 (2020).
13. C. Su, Z. Li, D. Zhang, Z. Wang, X. Zhou, L. Liao, X. Xiao, Biosens. Bioelectron., 148, 111819 (2020).
14. M. Shirani, F. Salari, S. Habibollahi, A. Akbari, Microchem. J., 152, 104340 (2020).
15. J. L. Todolí, J. M. Mermet, Spectrochim. Acta B: At. Spectrosc., 61, No. 3, 239–283 (2006).
16. Y. He, L. Liao, C. Xu, S. Li, R. Wu, Y. Yang, Spectrosc. Lett., 48, No. 8, 616–621 (2015).
17. C. Liu, Q. Li, D. Zhang, Y. Li, J. Liu, X. Xiao, Prog. Chem., 71 (2020).
18. T. Haino, T. Fujii, A. Watanabe, U. Takayanagi, Proc. Nat. Acad. Sci., 106, No. 26, 10477–10481 (2009).
19. D. Zhang, Z. Wang, J. Yang, L. Yi, L. Liao, X. Xiao, Biosens. Bioelectron., 182, 113174 (2021).
20. M. H. Sorouraddin, M. R. Rashidi, B. Shabani, E. Ghorbani‐Kalhor, Chin. J. Chem., 23, No. 2, 160–165 (2005).
21. Z. Su, Y. Cheng, C. Li, Y. Xiong, L. Xiao, S. Chen, X. Qin, Nanoscale Adv., 1, No. 9, 3607–3613 (2019).
Review
For citations:
Yang J., Li Q., Xu C., Li Y., Nie L., Liu C., Xiao X., Nie C., Zhou X., Liao L. Detection of Zinc in Food Based on High-Stability Zinc Coordination Supramolecular Self-Assembled Polymer Enhanced Resonance Light Scattering. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):906.