A Stacking-Based Ensemble Learning Method for Available Nitrogen Soil Prediction with a Handheld Micronear-Infrared Spectrometer
Abstract
Soil-available nitrogen is a vital index related to the growth and development of crops. The real-time and non-destructive detection of the soil-available nitrogen content based on near-infrared (NIR) spectroscopy could improve the accurate management of crop nutrients. In this manuscript, soil NIR spectroscopy and available nitrogen data are used in a stacked framework to develop a reliable and accurate soilavailable nitrogen model. The spectral reflectance of the soil samples was collected in the 900 to 1700 nm band with nine pre-processing methods using a handheld micronear-infrared spectrometer. The stacking framework of this manuscript has two layers. Extreme gradient boosting (XGBoost), categorical boosting (CatBoost), a light gradient boosting machine (LightGBM) and a random forest, which are tree-based algorithms, are stacked as base models in the first layer. In the second layer, linear regression is employed in a meta-model to identify the unique learning pattern of the base model. The results show that the range and characteristics of the spectra can be used to make relevant predictions, and the micro-NIR spectra are variable under different pre-treatments. In addition, the stacked model achieves the best performance of all the models tested. Notably, the coefficient of determination (R2) is 0.942, and the relative percent difference is 4.192 with Savitzky–Golay and multiplicative scatter correction. This manuscript presents an efficient method for predicting soil-available nitrogen levels with a handheld micronear-infrared spectrometer.
Keywords
About the Authors
M. WanRussian Federation
Hefei
X. Jin
Russian Federation
Hefei
Y. Han
Russian Federation
Hefei
L. Wang
Russian Federation
Hefei
S. Li
Russian Federation
Hefei
Y. Rao
Russian Federation
Hefei
X. Zhang
Russian Federation
Hefei
Q. Gao
Russian Federation
Hefei
References
1. X. Mu, Y. Chen, Plant Physiol. Biochem., 158, 76–82 (2021).
2. X. Wang, J. Fan, Y. Xing, G. Xu, H. Wang, J. Deng, Y. Wang, F. Zhang, P. Li, Z. Li, Adv. Agronomy, 153, 121–173 (2019).
3. T. Terhoeven-Urselmans, H. Schmidt, R. G. Joergensen, B. Ludwig, Soil Biol. Biochem., 40, N 5, 1178–1188 (2008).
4. R. V. Rossel, R. Webster, Eur. J. Soil Sci., 63, N 6, 848–860 (2012).
5. R. V. Rossel, S. R. Cattle, A. Ortega, Y. Fouad, Geoderma, 150, N 3-4, 253–266 (2009).
6. B. Stenberg, R. A. V. Rossel, A. M. Mouazen, J. Wetterlind, Adv. Agronomy, 107, 163–215 (2010).
7. S. Nawar, A. M. Mouazen, Sensors, 17, N 10, 2428 (2017).
8. T. Leng, F. Li, Y. Chen, L. Tang, J. Xie, Q. Yu, Meat Sci., 180, 108559 (2021).
9. M. Knadel, L. W. de Jonge, M. Tuller, H. U. Rehman, P. W. Jensen, P. Moldrup, M. H. Greve, E. Arthur, Vadose Zone J., 19, N 1, e20007 (2020).
10. V. Ulissi, F. Antonucci, P. Benincasa, M. Farneselli, G. Tosti, M. Guiducci, F. Tei, C. Costa, F. Pallottino, L. Pari, Sensors, 11, N 6, 6411–6424 (2011).
11. Y. Shao, Y. He, Soil Res., 49, N 2, 166–172 (2011).
12. J. Tang, J. Liang, C. Han, Z. Li, H. Huang, Accident Analysis & Prevention, 122, 226–238 (2019).
13. H.-C. Yi, Z.-H. You, M.-N. Wang, Z.-H. Guo, Y.-B. Wang, J.-R. Zhou, BMC Bioinformatics, 21, N 1, 1–10 (2020).
14. F. Liu, R. Zhao, L. Shi, arXiv preprint arXiv, 2103, 13124 (2021).
15. Å. Rinnan, F. V. D. Berg, S. B. Engelsen, TrAC Trends Anal. Chem., 28, N 10, 1201–1222 (2009).
16. A. Savitzky, M. J. Golay, Anal. Chem., 36, N 8, 1627–1639 (1964).
17. S. Nawar, H. Buddenbaum, J. Hill, J. Kozak, A. M. Mouazen, Soil and Tillage Res., 155, 510–522 (2016).
18. R. J. Barnes, M. S. Dhanoa, S. J. Lister, Appl. Spectr., 43, N 5, 772–777 (1989).
19. T. Isaksson, T. Næs, Appl. Spectr., 42, N 7, 1273–1284 (1988).
20. A. Peirs, A. Schenk, B. M. Nicolaı̈, Postharvest Biology and Technology, 35, N 1, 1–13 (2005).
21. M. S. Askari, J. Cui, S. M. O’Rourke, N. M. Holden, Soil and Tillage Res., 146, 108–117 (2015).
22. H. Liang, M. Zhang, C. Gao, Y. Zhao, Sensors, 18, N 6, 1963 (2018).
23. X. Jin, L. Wang, W. Zheng, X. Zhang, L. Liu, S. Li, Y. Rao, J. Xuan, Measurement, 110553 (2021).
24. A. Gholizadeh, L. Borůvka, M. M. Saberioon, J. Kozak, R. Vašát, K. Němeček, Soil and Water Res., 10, N 4, 218–227 (2015).
25. Y. Sun, M. Yuan, X. Liu, M. Su, L. Wang, Y. Zeng, H. Zang, L. Nie, Microchem. J., 159, 105492 (2020).
26. J. Duckworth, Near‐Infrared Spectrosc. Agric., 44, 113–132 (2004).
27. M. S. Dhanoa, S. J. Lister, R. Sanderson, R. J. Barnes, J. Near Infrared Spectrosc., 2, N 1, 43–47 (1994).
28. B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, J. Lammertyn, Postharvest Biology and Technology, 46, N 2, 99–118 (2007).
29. A. Wagner, S. Hilgert, T. Kattenborn, S. Fuchs, Water Supply, 19, N 4, 1204–1211 (2019).
30. S. Katuwal, M. Knadel, T. Norgaard, P. Moldrup, M. H. Greve, L. W. de Jonge, Geoderma, 361, 114080 (2020).
31. J.-H. Cheng, D.-W. Sun, Food Eng. Rev., 9, N 1, 36–49 (2017).
32. M. H. D. M. Ribeiro, L. dos Santos Coelho, Appl. Soft Computing, 86, 105837 (2020).
33. X. Luo, L. Xu, P. Huang, Y. Wang, J. Liu, Y. Hu, P. Wang, Z. Kang, Agriculture, 11, N 7, 673 (2021).
34. T. Chen, C. Guestrin, Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 785–794 (2016).
35. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, A. Gulin, arXiv preprint arXiv, 1706, 09516 (2017).
36. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Adv. Neural Information Proc. Systems, 30, 3146–3154 (2017).
37. L. Breiman, Machine Learning, 45, N 1, 5–32 (2001).
38. Y. Li, Y. Lei, P. Wang, M. Jiang, Y. Liu, Appl. Soft Computing, 101, 107003 (2021).
39. T. Wu, W. Zhang, X. Jiao, W. Guo, Y. Alhaj Hamoud, Computers and Electron. Agric., 184 (2021).
40. E. Al Daoud, Int. J. Computer and Information Engineering, 13, N 1, 6–10 (2019).
41. R. Zornoza, C. Guerrero, J. Mataix-Solera, K. Scow, V. Arcenegui, J. Mataix-Beneyto, Soil Biol. Biochem., 40, N 7, 1923–1930 (2008).
42. L. C. Lee, C.-Y. Liong, A. A. Jemain, AIP Conference Proceedings (AIP Publishing LLC, 020116 (2018).
43. S. Chen, H. Xu, D. Xu, W. Ji, S. Li, M. Yang, B. Hu, Y. Zhou, N. Wang, D. Arrouays, Geoderma, 400, 115159 (2021).
44. C. H. Bazoni, E. I. Ida, D. F. Barbin, L. E. Kurozawa, J. Stored Prod. Res., 73, 1–6 (2017).
45. Y. Hong, S. Chen, Y. Liu, Y. Zhang, L. Yu, Y. Chen, Y. Liu, H. Cheng, Y. Liu, Catena, 174, 104–116 (2019).
46. W. Ni, L. Nørgaard, M. Mørup, Anal. Chim. Acta, 813, 1–14 (2014).
47. A. Kartakoullis, J. Comaposada, A. Cruz-Carrión, X. Serra, P. Gou, Food Chem., 278, 314–321 (2019).
48. W. Ji, R. Viscarra Rossel, Z. Shi, Eur. J. Soil Sci., 66, N 3, 555–565 (2015).
49. E. W. Ciurczak, Pract. Spectrosc. Ser., 27, 7–18 (2001).
50. M. Haest, T. Cudahy, C. Laukamp, S. Gregory, Economic Geology, 107, N 2, 209–228 (2012).
Review
For citations:
Wan M., Jin X., Han Y., Wang L., Li S., Rao Y., Zhang X., Gao Q. A Stacking-Based Ensemble Learning Method for Available Nitrogen Soil Prediction with a Handheld Micronear-Infrared Spectrometer. Zhurnal Prikladnoii Spektroskopii. 2022;89(6):907.